Ausgewählte Produkte

  • Cobra SMARTsense Temperature - Sensor zur Messung von Temperatur -40 ... 125 °C (Bluetooth)

    Funktion und Verwendung Cobra SMARTsense ist die ideale Lösung zur preiswerten Umsetzung der Digitalisierung des naturwissenschaftlichen Unterrichts. Die Sensoren verbinden sich drahtlos (Bluetooth) oder kabelgebunden (USB) direkt mit dem digitalen Endgerät (Smartphone, Tablet oder Desktop-PC) des Schülers. Auch können Messdaten ohne Verbindung zum Endgerät mit Hilfe der Offline-Messfunktion aufgezeichnet und zu einem späteren Zeitpunkt ausgelesen werden. Über die kostenlose und preisgekrönte Messsoftware measureAPP für iOS, Android und Windows können Messwerte ganz einfach erfasst und grafisch dargestellt werden. Wenn mehr Auswertung benötigt wird, kann die Messsoftware measureLAB für Windows und macOS verwendet werden. Dieser Sensor ermöglicht eine Echtzeit-Temperaturvermessung mit grafischem Verlauf zur Untersuchung von temperaturabhängigen Prozessen, die auch über eine längere Zeit andauern können. Die Wasserfestigkeit sorgt für die Langlebigkeit des Sensors auch bei Experimenten mit Flüssigkeiten.  Vorteile • Einfachheit - Direkt loslegen mit jedem Bluetooth-fähigen Endgerät und der kostenlosen measureAPP. • Vollständigkeit - Über 40 Sensoren mit mehr als 70 Messgrößen für alle Fachbereiche. • Ausdauer - Intelligentes und effizientes Powermanagement  für bis zu 50 Unterrichtsstunden mit einer Akkuladung. • Vielseitigkeit - Die kostenlose measureAPP unterstützt perfekt und läuft maßgeschneidert auf allen mobilen Plattformen und Endgeräten. Für Profis steht measureLAB bereit. • Performance - Bis zu 32.000 Messwerte pro Sekunde garantieren Präzision und es sind Aufnahmen mit bis zu 17 Messkanälen gleichzeitig möglich.  • Konnektivität - Schnelles Verbinden der Sensoren und Datenaustausch über Bluetooth - für viele Sensoren zusätzlich per USB möglich.

    CHF 132.-

  • leXsolar-NewEnergy Ready-to-go

    Funktion und Verwendung Mit diesem Gerätesatz können Sie und Ihre Schüler qualitative und quantitative Experimente mit hoher didaktischer Qualität zu den Themen Photovoltaik, Wind- und Wasserkraft, Elektromobilität und Energiespeicherung sowie zu Brennstoffzellen in der Grund- und Mittelstufe durchführen. Durch die SmartControl-Komponenten verfügen Sie über ein hochwertiges Mess-und Steuersystem und alle benötigten Zubehörteile wie Messgeräte, Spannungsquelle und Kabel sind bereits enthalten.

    CHF 3’451.85

  • leXsolar-EMobility Large

    Funktion und Verwendung Beschreibung: Mit diesem Produkt lernen die Schüler physikalisch-technische Grundlagen und Anwendungen zu verschiedenen Batterietechnologien kennen. Mithilfe eines Elektromodellautos wird das hochaktuelle Thema Elektromobilität anwendungsnah untersucht. Die Dimensionierung und Anwendung verschiedener Akkutypen werden ebenso behandelt wie Lebensdauer oder Ladeverfahren. Anhand qualitativer und quantitativer Experimente können die Charakteristika verschiedener Batterietypen analysiert werden. Als Erweiterung sind ein Lithium-Polymer und ein Blei-Akkumodul erhältlich. Angesichts der Speicherproblematik erneuerbarer Energien sind dies hochaktuelle Fragen, die Eingang in die schulische Bildung finden sollten. Folgende Experimente können durchgeführt werden: • Elektrische Grundlagen: Ohmsches Gesetz, Reihenschaltung von ohmschen Widerständen, Parallelschaltung von ohmschen Widerständen, die Nennspannung und Kapazität von Spannungsquellen, die Vierpunkt-Messung, der Innenwiderstand von Spannungsquellen, Reihenschaltung von Spannungsquellen • Die Speicherkapazität eines Akku-Moduls • Der Energiegehalt verschiedener Akkumodule • Der Ri-Wirkungsgrad eines Akkumoduls • Der Gesamtwirkungsgrad einer Batterie • Temperaturverhalten der Lithium-Polymerzelle • Das Ladeverhalten des Kondensators • Das Entladeverhalten des Kondensators • U-I-Kennlinie des einfachen NiMH-Akkumoduls • U-I-Kennlinie des NiZn-Akkumoduls • U-I-Kennlinie des LiFePo-Akkumoduls • U-I-Kennlinie des Blei-Akkumoduls • U-I-Kennlinie des Lithium-Polymer-Akkumoduls • U-I-Kennlinie des dreifachen NiMH-Akkumoduls • Das Ladeverfahren des NiMH-Akkus • Das Ladeverfahren des NiZn-Akkus ◦ Das Ladeverfahren des LiFePo-Akkus ◦ Das Ladeverfahren des Blei-Akkus ◦ Das Ladeverfahren des LiPo-Akkus ◦ Das Entladeverfahren eines Akkumoduls ◦ Die Wasserstoffproduktion der reversiblen Brennstoffzelle ◦ Die Kennlinie des Elektrolyseurs ◦ Der Wasserstoffverbrauch einer Brennstoffzelle ◦ Die Kennlinie der Brennstoffzelle ◦ Der Wirkungsgrad der Brennstoffzelle ◦ Betrieb des Elektroautos mit verschiedenen Akkumodulen ◦ Betrieb des Elektroautos mit einer Brennstoffzelle Lieferumfang: ◦ 1 x 1100-62 Potentiometermodul 110 Ohm Pro ◦ 1 x 1118-09 Akkumodul NiMH 3xAAA Pro ◦ 1 x 1118-11 Kondensatormodul Pro ◦ 1 x 1801-07 leXsolar Grundeinheit EMobility ◦ 1 x 1800-01 Widerstandsmodul 3-fach Pro ◦ 1 x 1800-03 Widerstands-Steckelement 1 Ohm ◦ 2 x 1800-05 Widerstands-Steckelement 10 Ohm ◦ 1 x 1800-08 Akkuhalterungsmodul 1xAAA Pro ◦ 1 x 1801-02 Elektro-Modellfahrzeug ◦ 1 x 1801-06 LiFePo-Akku AAA ◦ 1 x 1802-02 Box 1802 ▪ 1 x 1800-15 Destilliertes Wasser (100 ml) ▪ 1 x 1800-04 Widerstands-Steckelement 100 Ohm ▪ 1 x L2-04-102 NiZn-Akku AAA ▪ 1 x L2-06-067 Reversible Brennstoffzelle ▪ 1 x L3-03-258 Infozettel Inbetriebnahme ▪ 1 x L3-01-013 Deckel für Box ▪ 1 x L3-01-070 Einlage 4E Energiespeicherbox 5002 ▪ 1 x L3-03-166 Einräumplan 1802 EMobility Large ▪ 1 x L2-04-021 NiMH-Akku AAA Zusätzlich werden benötigt: ▪ 1 x AV-Modul (LEX-9100-03) ▪ 1 x L2-06-012 Messleitung 25cm, schwarz ▪ 1 x L2-06-013 Messleitung 25cm, rot ▪ 1 x L2-06-014 Messleitung 50cm, schwarz ▪ 1 x L2-06-015 Messleitung 50cm, rot ▪ 1 x 9100-13 ChargerModul ▪ 1 x L2-06-011 Digitalmultimeter ▪ 1 x Messleitung 25cm, schwarz

    CHF 1’399.10

  • Messwerterfassungsmodul für Stirlingmotor

    Funktion und Verwendung Modul zur quantitativen, digitalen Messwerterfassung des Stirling-Motors (04372-00). Vorteile • Alle notwendigen Messgrößen sind direkt in dem Modul integriert: ◦ 2x Temperatur (T1, T2), Druck (p), Drehwinkel/-zahl sowie das berechnete Volumen. • Leichter Umbau des klassischen qualitativen Versuchs in einen quantitativen Versuch. • Direkt den Kreisprozess auf ihrem PC sichtbar machen.

    CHF 2’654.90

  • Stativstangen, Edelstahl, diverse Größen

    Funktion und Verwendung Stativstange aus Edelstahl

    CHF 11.30

  • Verbindungsleitung, 32 A, rot, diverse Längen

    Funktion und Verwendung Verbindungsleitung mit 4-mm-Stecker.

    CHF 7.90

  • Verbindungsleitung, 32 A, blau, diverse Längen

    Funktion und Verwendung Verbindungsleitung mit 4-mm-Stecker

    CHF 7.90

Zeigt 1-12 von 27 Produkten 27 Produkte in Wärmelehre / Thermodynamik

Absorption von Wärmestrahlung

Prinzip Ein blanker und ein schwarzer Becher werden durch Strahlung erwärmt. Die Sonne wird durch eine leuchtende Flamme ersetzt, die vor den Bechern steht. Beide Becher sind mit Luft gefüllt, da Wasser eine zu große Wärmekapazität besitzt und zu langsam erwärmt würde. Vorteile • Echtes Stativmaterial für besonders stabilen und damit sicheren Aufbau • RiSU-konformer Bunsenbrenner im Zubehör erhältlich • Schülergerechte Anleitungen inklusive Protokollfragen

CHF 290.10

Ausdehnung von Flüssigkeiten und Gasen

Prinzip Die Schüler sollen in diesem Versuch die Ausdehnung von Wasser und Luft bei Erwärmung qualitativ beobachten. Vorteile • Echtes Stativmaterial für besonders stabilen und damit sicheren Aufbau • RiSU-konformer Bunsenbrenner im Zubehör erhältlich • Schülergerechte Anleitungen inklusive Protokollfragen

CHF 362.-

Die Anomalie des Wassers

Prinzip Generell dehnen sich Flüssigkeiten, Gase und Festkörper aus, wenn sie erwärmt werden. Wasser hat jedoch eine besondere Eigenschaft, die es von fast allen anderen Flüssigkeiten unterscheidet: Seine Dichte ist bei 4 °C am größten. Ober- und unterhalb von 4 °C nimmt die Dichte ab. Daher ist Eis leichter als Wasser und schwimmt an der Oberfläche. In diesem Experiment soll die Anomalie von Wasser durch ein Eisbad mit zwei Thermometern veranschaulicht werden. Vorteile • Optimiert für Demonstrationsversuche: Von der Horizontalen in die Senkrechte gebracht • Demonstrative Anzeige der Messwerte durch Cobra4 MobileLink 2 mit Großanzeige • Glasgeräte, Flüssigkeitsoberflächen- und strömungen sind vor dem einfarbigen Hintergrund der Tafel gut erkennbar

CHF 5’904.85

Emissionsvermögen heißer Körper

Prinzip Wärmestrahlung ist an allen Flächen messbar, solange sich ihre Temperatur von der ihrer Umgebung unterscheidet. Hierbei gilt: Je heißer ein Objekt ist, desto mehr strahlt es ab. Zudem spielt auch die Farbe der Oberfläche eine Rolle; dunkle Flächen können mehr Wärme abstrahlen als helle. Eine Anwendung findet sich beispielsweise bei passiven Kühlkörpern, die oft mit einer schwarzen Schicht überzogen sind, damit sie so mehr Wärme abstrahlen können. Vorteile • Einfacher Aufbau • Günstiger Versuch • Nutzbar als Praktikums- und Demonstrationsversuch

CHF 2’745.55

Erwärmen verschiedener Flüssigkeiten

Prinzip Die Abhängigkeit der Erwärmung einer Flüssigkeit von ihrer spezifischen Wärmekapazität soll hier erarbeitet werden. In den Versuchsreihen sind die Massen der Flüssigkeiten und die Heizleistung gleich, so dass die spez. Wärmekapazitäten zwar nicht absolut, aber im Verhältnis zum Wasser angegeben werden können. Die Flüssigkeiten werden mit einer Heizwendel erwärmt, um sicherzustellen, dass alle Versuchsreihen mit der gleichen Heizleistung durchgeführt werden. Würde als Heizung ein Butanbrenner mit gleich bleibender Flamme verwendet, so wäre diese Bedingung nur ungenügend erfüllt, da auch die Temperaturen von z.B. Stativring, Drahtnetzunterlage und Becherglas Einfluss auf das Messergebnis haben. Vorteile • Eigener Aufbau eines Kalorimeters vertieft das Verständnis • Schülergerechte Anleitungen inklusive Protokollfragen

CHF 595.80

Erwärmen verschiedener Wassermengen

Prinzip Verschiedene Wassermengen werden mit einer Heizwendel in einem Kalorimeter erhitzt. Die gewählten Wassermengen sind auf die Größe des Kalorimeters abgestimmt (100 ml, 150 ml, 200 ml) und stehen in einfachen Verhältnissen zueinander, so dass offensichtlich wird: Je mehr Wasser, desto länger muss geheizt werden, bzw. bei gleicher Heizenergie ist die Temperaturerhöhung umgekehrt proportional zur Wassermenge. Das Wasser wird mit einer Heizwendel erwärmt, um sicherzustellen, dass alle drei Versuchsreihen mit der gleichen Heizleistung durchgeführt werden. Wird als Heizung ein Butanbrenner mit gleich bleibender Flamme verwendet, so ist diese Bedingung nur ungenügend erfüllt, da auch die Temperaturen von z.B. Stativring, Drahtnetzunterlage und Becherglas Einfluss auf das Messergebnis haben.   Vorteile • Eigener Aufbau eines Kalorimeters vertieft das Verständnis • Schülergerechte Anleitungen inklusive Protokollfragen

CHF 581.75

Erwärmen von Wasser mit Cobra SMARTsense

Prinzip Die Wärme als innere Energie einer Stoffmenge kann durch die Einwirkung einer Leistung über einen bestimmten Zeitraum verändert werden. Diese Energie kann vereinfacht als Produkt aus Stoffmenge und Temperatur verstanden werden. Also ist der Zusammenhang zwischen Dauer eines Erwährmungsvorgang proportional zur erwärmten Stoffmenge, wenn die zugeführte Leistung und die Temperaturdifferenz gleich ist. Vorteile • Besonders verständliche und didaktisch aufbereitete Versuchsbeschreibung (Alltagsbezug etc.) inkl. Protokollfragen • Zukunftsorientiert unterrichten: Einbindung in den digitalen naturwissenschaftlichen Unterricht mit Tablets • Erhöhte Motivation bei Schüler/innen durch Nutzung der intuitiven measureAPP • Steigerung der Medienkompetenz

CHF 694.15

Herstellen einer Thermometerskala

Prinzip Die Celsius-Temperaturskala basiert auf zwei Fixpunkten: Der Schmelztemperatur von Eis bei 0 °C und der Siedetemperatur von Wasser bei 100 °C. In diesem Experiment soll anhand dieser Fixpunkte die Herstellung einer Celsius-Temperaturskala nachempfunden werden. Mit dem selbst-kalibrierten Thermometer sollen Messungen vorgenommen werden, die mit einem digitalen Thermometer verglichen werden. Vorteile • Optimiert für Demonstrationsversuche: Von der Horizontalen in die Senkrechte gebracht • Demonstrative Anzeige der Messwerte durch Cobra4 MobileLink 2 mit Großanzeige • Sicherer Halt für Brenner und heiße Geräte • Glasgeräte, Flüssigkeitsoberflächen- und strömungen sind vor dem einfarbigen Hintergrund der Tafel gut erkennbar

CHF 3’703.65

Herstellen eines Temperaturgleichgewichts

Prinzip Berühren sich zwei Körper unterschiedlicher Temperatur, so findet ein Temperaturausgleich statt, bis beide Körper die gleiche Temperatur haben (thermisches Gleichgewicht). Die Schüler sollen den zeitlichen Temperaturverlauf messen und dabei auch feststellen, dass die Temperaturänderungen um so größer sind je größer die Temperaturdifferenz ist. Der Vorgang lässt sich auch mit Hilfe des Energiebegriffes beschreiben (1. Zusatzaufgabe). Vorteile • Echtes Stativmaterial für besonders stabilen und damit sicheren Aufbau • RiSU-konformer Bunsenbrenner im Zubehör erhältlich • Schülergerechte Anleitungen inklusive Protokollfragen

CHF 300.40

Kalibrieren eines Thermometers (Thermometermodell)

Prinzip Die Celsius-Temperaturskala ist durch Schmelz- und Siedepunkt des Wassers festgelegt. Die Schüler sollen ein ungraduiertes Thermometer mit einer Skale versehen und einige Messungen mit diesem Thermometer vornehmen. Vorteile • Echtes Stativmaterial für besonders stabilen und damit sicheren Aufbau • RiSU-konformer Bunsenbrenner im Zubehör erhältlich • Schülergerechte Anleitungen inklusive Protokollfragen

CHF 321.20

Längeausdehnung von Metallen

Prinzip Metallrohre werden durch Wasserdampf erhitzt. Die Längenausdehnung von drei verschiedenen Metallen wird mit Hilfe eines Rollzeigers gemessen. Daraus wird der Längen-Ausdehnungskoeffizient der Metalle bestimmt (Zusatzaufgabe). Die Verwendung eines Rollzeigers hat den Vorteil, dass die Anzeige der Ausdehnung reibungsfrei erfolgt. Die Funktionsweise des Rollzeigers kann leicht in einem einfachen Experiment erläutert und vom Schüler untersucht werden. Der Schüler sollte es ausprobieren, bevor er in der Auswertung die Längenänderung Δl berechnet. Vorteile • Echtes Stativmaterial für besonders stabilen und damit sicheren Aufbau • RiSU-konformer Bunsenbrenner im Zubehör erhältlich • Schülergerechte Anleitungen inklusive Protokollfragen

CHF 523.55

Mechanisches Wärmeäquivalent

Prinzip In diesem Versuch wird ein Metall-Testkörper gedreht und durch die Reibung wird ein gespanntes Band aus synthetischem Material erhitzt. Das mechanische Wäremequivalent wird durch die definierte mechanische Arbeit und dem thermischen Energieanstieg der von dem Temperaturanstieg abgeleitet wird, bestimmt. Ausgehend von der Gleichwertigkeit mechanischer Arbeit und Wärme, wird die spezifische Wärmekapazität von Aluminium und Messing berechnet. Vorteile • Preiswerter Versuchsaufbau • Perfekt als Demonstrations- und Praktikumsversuch geeignet

CHF 1’686.-