Ausgewählte Produkte

  • Einfluss der Fläche einer Solarzelle auf Spannung und Stromstärke

    Prinzip Im Versuch wird die Fläche der Solarzelle mit einer schwarzen Pappe abgedeckt. Stromstärke und Spannung der Solarzelle werden gemessen. Vorteile • Versuch ist Teil einer Komplettlösung mit insgesamt 26 Versuchen zum Thema Erneuerbare Energie Solarzellen, Windenergie, Wasserkraft • Sicheres Experimentieren: die Lampe ist vor Berührung geschützt, das Gehäuse ist mit Hilfe von Bohrungen gut durchlüftet und erhitzt sich nur wenig • Das verwendete Netzgerät ist vielfältig einsetzbar und besonders geeignet für Schülerversuche für alle Altersstufen ("RiSU 2016 - Konform")

    CHF 1’113.30

  • Speicherung elektrischer Energie einer Solarzelle mit einem Akku

    Prinzip Akkumulatoren können unterschiedliche Ladezustände haben. Prüfen sie vor dem Experiment, ob ihr Akku so weit entladen ist, dass das Glühlämpchen zu Beginn des Versuches nicht leuchtet. Leuchtet es, so kann der Akku recht schnell über das 6-V-Glühlämpchen entladen werden. Der Akku kann andererseits so tief entladen sein, dass die Aufladezeit von 7 Minuten nicht ausreicht. In diesem Fall muss die Aufladezeit erhöht werden. Vorteile • Versuch ist Teil einer Komplettlösung mit insgesamt 26 Versuchen zum Thema Erneuerbare Energie Solarzellen, Windenergie, Wasserkraft • Das verwendete Netzgerät ist vielfältig einsetzbar und besonders geeignet für Schülerversuche für alle Altersstufen ("RiSU 2016 - Konform") • Doppelter Lernerfolg: Elektrischer Schaltplan auf der Ober- und reele Bauteile auf der Unterseite sichtbar

    CHF 1’282.85

  • Spannung und Stromstärke einer Solarzelle in Abhängigkeit vo der Beleuchtungsstärke (Aufnahme von Diagrammen)

    Prinzip In diesem Versuch wird der Einfluss der Beleuchtungsstärke auf Leerlaufspannung und Kurzschlussstromstärke untersucht. Die Beleuchtungsstärke kann durch Wahl des Abstandes oder des Beleuchtungswinkels verändert werden. Vorteile • Versuch ist Teil einer Komplettlösung mit insgesamt 26 Versuchen zum Thema Erneuerbare Energie Solarzellen, Windenergie, Wasserkraft • Das verwendete Netzgerät ist vielfältig einsetzbar und besonders geeignet für Schülerversuche für alle Altersstufen ("RiSU 2016 - Konform") • Doppelter Lernerfolg: Elektrischer Schaltplan auf der Ober- und reele Bauteile auf der Unterseite sichtbar

    CHF 1’221.85

  • Die Solarzelle als Diode

    Prinzip Die Schüler sollen das Verhalten einer unbeleuchteten Solarzelle kennenlernen. Dazu wird an die Solarzelle eine Gleichspannung angelegt und mit Hilfe einer Glühlampe untersucht, ob ein Strom fließt. Anschließend wird die Spannung umgepolt. Vorteile • Versuch ist Teil einer Komplettlösung mit insgesamt 26 Versuchen zum Thema Erneuerbare Energie Solarzellen, Windenergie, Wasserkraft • Das verwendete Netzgerät ist vielfältig einsetzbar und besonders geeignet für Schülerversuche für alle Altersstufen ("RiSU 2016 - Konform") • Doppelter Lernerfolg: Elektrischer Schaltplan auf der Ober- und reele Bauteile auf der Unterseite sichtbar

    CHF 822.70

  • Spannung und Stromstärke bei der Parallelschaltung von Solarzellen

    Prinzip Die Schüler sollen eine Parallelschaltung von Solarzellen untersuchen indem sie die Leerlaufspannung Uges und die Kurzschlussstromstärke Iges messen. Durch Parallelschaltung von Solarzellen können höhere Stromstärken erzielen werden. Desweiteren werden die Stromstärken I1 und I2 an den beiden Solarzellen gemessen. Hieraus und aus Iges lässt sich der Zusammenhang für parallel geschaltete Solarzellen ableiten: Iges  = I1  + I2. Die Spannungen an den einzelnen parallel geschalteten Solarzellen ist gleich der Leerlaufspannung Uges: Uges  = U1  = U2.

    CHF 1’311.65

  • Spannung und Stromstärke bei der Reihenschaltung von Solarzellen

    Prinzip Die Schüler sollen eine Reihenschaltung von Solarzellen untersuchen, indem sie die Leerlaufspannung Uges und die Kurzschlussstromstärke Iges messen. Durch das Schaltung von Solarzellen in Reihe können höhere Spannungen erzielen werden. Desweiteren werden die Spannungen U1 und U2 an den beiden Solarzellen gemessen. Hieraus und aus Uges lässt sich der Zusammenhang für in Reihe geschaltete Solarzellen ableiten: Uges  = U1 + U2. Die Stromstärken an den einzelnen in Reihe geschalteten Solarzellen ist gleich der Kurzschlussstromstärke Iges: Iges = I1 = I2.

    CHF 1’351.75

  • Modell eines Parabolrinnen-Feldes

    Prinzip In einem Parabolrinnen-Kraftwerk wird Wasser in einem Rohr durch die Sonne erwärmt. Durch die Parabolrinne werden die einfallenden Lichtstrahlen gebündelt, um einen höheren Wirkungsgrad zu erreichen. Das Wasser im isolierten schwarzen Rohr verdampft durch die Hitze, durch diesen Dampf wird eine Turbine und damit ein Generator angetrieben. In diesem Versuch wird das Verdampfen des Wassers durch das Kondensat an der Innenfläche des Reagenzglases gezeigt. Vorteile • Versuch ist Teil einer Komplettlösung mit insgesamt 26 Versuchen zum Thema Erneuerbare Energie Solarzellen, Windenergie, Wasserkraft • Sicheres Experimentieren: die Lampe ist vor Berührung geschützt, das Gehäuse ist mit Hilfe von Bohrungen gut durchlüftet und erhitzt sich nur wenig • Das verwendete Netzgerät ist vielfältig einsetzbar und besonders geeignet für Schülerversuche für alle Altersstufen ("RiSU 2016 - Konform")

    CHF 903.55

  • Erwärmen von Wasser mit einer Parabolrinne

    Prinzip Dieser Versuch verdeutlicht das Prinzip der Erwärmung von Flüssigkeiten mithilfe einer Parabolrinne und deren Vorteile. Durch die Parabolrinne ist es möglich, einen größeren Anteil der eintreffenden Energie zu nutzen, dies steigert den Wirkungsgrad der Apparatur. Diese Versuche sollen die Auswirkungen einer Parabolrinne auf die Erwärmung von Wasser in einem Reagenzglas durch eine Lampe oder die Sonne zeigen. Dafür wird der Temperaturverlauf des Wassers im Reagenzglas untersucht. Vorteile • Versuch ist Teil einer Komplettlösung mit insgesamt 26 Versuchen zum Thema Erneuerbare Energie Solarzellen, Windenergie, Wasserkraft • Sicheres Experimentieren: die Lampe ist vor Berührung geschützt, das Gehäuse ist mit Hilfe von Bohrungen gut durchlüftet und erhitzt sich nur wenig • Das verwendete Netzgerät ist vielfältig einsetzbar und besonders geeignet für Schülerversuche für alle Altersstufen ("RiSU 2016 - Konform")

    CHF 933.15

Zeigt 1-5 von 5 Produkten 5 Produkte in Energie

Die Peltier-Wärmepumpe mit ADM3

Prinzip Fließt ein Gleichstrom durch ein Peltier-Element, dann erwärmt sich eine Seite und die andere kühlt sich ab. Wegen dieser Eigenschaft lässt sich mit Hilfe des Peltier-Elements das Prinzip der einer Wärmepumpe erklären: Die warme Seite wird nicht nur durch den elektrischen Strom erhitzt, sondern auch durch das Abkühlen der anderen Seite, es wird Energie von der kalten Seite auf die warme "gepumpt". In diesem Versuch werden Temperaturen und elektrische Arbeit in Abhängigkeit von der Zeit gemessen. Daraus lassen sich die elektrische Energie und Wärmeenergien auf beiden Seiten bestimmen und Leistungsziffer und Wirkungsgrad berechnen. Vorteile • Teil einer Systemlösung - Leicht erweiterbar für weitere Versuche • Einfaches Lehren durch Einsatz der Demo-Tafel Physik • Anschauliche Versuchsdurchführung durch Einsatz von ADM3-Multimetern

CHF 12’716.60

Erzeugen elektrischer Energie mit einem Thermogenerator

Prinzip Das Peltierelement (der Thermogenerator) besteht aus vielen Thermoelementen. Diese sind elektrisch in Reihe und thermisch parallel geschaltet, sodass sich ihre Thermospannungen addieren. Dieser Versuch zeigt, dass ein Thermogenerator elektrische Energie aus Wärmeenergie erzeugen kann. Die Thermospannung eines Thermogenerators ist von der Temperaturdifferenz über dem Element abhängig. Ein großer Speicher (Aluminium-Block) kann die Temperaturdifferenz über längere Zeit stabil (und damit auch höher) halten und hat daher Vorteile bei der Energiegewinnung. Die Ergebnisse hängen von der Umgebungstemperatur ab, daher können die Messwerte von der Musterlösung abweichen. Der generelle Verlauf der Thermospannung bleibt aber gleich. Vorteile • Versuch ist Teil einer Komplettlösung mit insgesamt 17 Versuchen zum Thema Erneuerbare Energien Grundlagen und Wärmeenergie • Direkter Schutz des Thermoelementes vor Überhitzung durch fest montierte Aluminiumplatten • Zusätzlicher Aluminiumblock zur Speicherung von Wärmeenergie

CHF 573.50

Peltier-Effekt: Kältemaschine

Prinzip Bei diesem Versuch wird der in Versuch 7.1 gezeigte Effekt umgekehrt. Anstatt mit Hilfe des Thermogenerators Wärme in elektrische Energie umzuwandeln, weisen wir hier den Peltier-Effekt nach. Dieser besteht darin, dass ein durch das Peltier-Element fließender Strom bewirkt, dass sich eine der Peltier-Element-Platten erwärmt und die andere abkühlt. Je höher die Stromstärke dabei ist, desto schneller wärmen bzw. kühlen sich die beiden Platten auch ab. Ein Becher mit Wasser steht auf dem Peltier-Element des Thermogenerators. Lässt man durch dieses Peltier-Element bei richtiger Polung einen Strom fließen, so kühlt die obere Platte des Peltier-Elements das Wasser ab. Vorteile • Versuch ist Teil einer Komplettlösung mit insgesamt 17 Versuchen zum Thema Erneuerbare Energien Grundlagen und Wärmeenergie • Direkter Schutz des Thermoelementes vor Überhitzung durch fest montierte Aluminiumplatten • Zusätzlicher Aluminiumblock zur Speicherung von Wärmeenergie

CHF 704.70

Peltier-Effekt: Wärmepumpe

Prinzip Eine Wärmepumpe ist eine Maschine, die mechanische oder elektrische Energie ausnutzt, um Wärmeenergie von einem Medium A in ein Medium B zu pumpen. Die dem Medium B zugeführte Wärme Q ist dabei größer als die aufgewendete mechanische bzw. elektrische Energie E0. Die Güte einer Wärmepumpe wird durch die sogenannte Leistungsziffer ε = Q / E0 beschrieben. Es gilt stets ε > 1. Die Wärmepumpe ist den Schülern als wichtiges Element alternativer Heizungstechnik bekannt. In der Industrie findet man meistens Kompressions-Wärmepumpen. In diesem Versuch wird eine Peltier-Wärmepumpe verwendet. Die wichtigste Eigenschaft eine Wärmepumpe, dass die Leistungsziffer größer als 1 ist, gilt auch hier: Die Wärmepumpe liefert mehr Wärmeenergie als elektrische Energie eingesetzt wird, denn sie entzieht einem anderen Medium (der Umgebung) Wärme. Dafür werden  z.B.  Sonnenkollektoren oder Erdwärme o.ä. genutzt. Im Experiment erwärmt sich das Wasser während sich der Aluminiumblock abkühlt. Der Aluminiumblock übernimmt daher die Funktion der Umgebung. Vorteile • Versuch ist Teil einer Komplettlösung mit insgesamt 17 Versuchen zum Thema Erneuerbare Energien Grundlagen und Wärmeenergie • Direkter Schutz des Thermoelementes vor Überhitzung durch fest montierte Aluminiumplatten • Zusätzlicher Aluminiumblock zur Speicherung von Wärmeenergie

CHF 812.25

Thermospannung und Temperatur

Prinzip Die Temperaturdifferenz wird in diesem Versuch durch einen Metall-Becher mit heißem Wasser erzeugt, der auf der oberen Platte des Thermoelementes steht.  Die Temperaturdifferenz verändert sich durch Abkühlen des heißen Wassers. Vorteile • Versuch ist Teil einer Komplettlösung mit insgesamt 17 Versuchen zum Thema Erneuerbare Energien Grundlagen und Wärmeenergie • Direkter Schutz des Thermoelementes vor Überhitzung durch fest montierte Aluminiumplatten • Zusätzlicher Aluminiumblock zur Speicherung von Wärmeenergie

CHF 330.55