

Pumpen von Wasser mit Solarenergie

Physik	Energie	Erneuerba	are Energien: Wasser
Physik	Energie	Energiesp	peicherung
Schwierigkeitsgrad leicht	QQ Gruppengröße	Vorbereitungszeit 10 Minuten	Durchführungszeit 10 Minuten



Lehrerinformationen

Anwendung

Versuchsaufbau

Pumpspeicherkraftwerke besitzen große, hoch gelegene Wasserbecken, um das Wasser bis zur Nutzung zu speichern.

Das Wasser wird mit Hilfe von elektrischer Energie aus zum Beispiel Kohle- oder Kernkraftwerken in die Becken hochgepumpt, wodurch Abfallprodukte wie CO₂ oder radioaktives Material entsteht.

Dieser Versuch zeigt eine Möglichkeit auf, wie stattdessen erneuerbare Energie eingesetzt werden kann.

info@phywe.de

www.phywe.de

Sonstige Lehrerinformationen (1/4)

Vorwissen

Die Schüler sollten die unterschiedlichen Formen kennen, in der Energie vorliegen kann.

Prinzip

In diesem Versuch wird eine Wasserpumpe über eine Solarzelle betrieben und beobachtet, wie hoch das Wasser gepumpt werden kann. Darauf basierend werden Aussagen über die Eigenschaften der Energieumwandlung getroffen.

Sonstige Lehrerinformationen (2/4)

Lernziel

Die Schüler lernen die Methode von Pumpspeicherkraftwerken kennen, welche es ermöglichen erneuerbare Energien zu speichern.

Aufgaben

In diesem Versuch wird eine Pumpe durch eine Solarbatterie mit elektrischer Energie versorgt. Es wird untersucht, wie sich die Lichtintensität auf die Pumpleistung auswirkt.

Sonstige Lehrerinformationen (3/4)

Hinweise zu Aufbau und Durchführung

Gewaltsames Anbringen der Solarzellenhalter an der Solarbatterie ist unbedingt zu vermeiden, da die Solarbatterie dadurch beschädigt wird. Es ist darauf zu achten, dass keine Luft in den Pumpen ist. Die Pumpleistung sinkt dadurch sehr stark. Es ist ratsam, destilliertes Wasser zu verwenden, um Verklemmen des Flügelrades oder andere Probleme durch Kalkrückstände zu vermeiden.

Sonstige Lehrerinformationen (4/4)

Maßnahmen zur Verbesserung der Pumpleistung:

- Spannungsquelle mehrmals an- und ausschalten, da die bereits entstandene Wassersäule Luft beim Rücklauf hinaus drückt.
- Gegebenenfalls die Pumpe schrägstellen und die Spannungsquelle wiederum mehrmals an- und ausschalten.
- Leichtes Klopfen der Pumpe auf den Wannenboden.
- Drehen des Flügelrades in der Pumpe, da es zum Beispiel durch Kalkrückstände verklemmt sein könnte (das Flügelrad ist an der Unterseite der Pumpe durch die Öffnung zu sehen.).

Tel.: 0551 604 - 0 Fax: 0551 604 - 107

Sicherheitshinweise

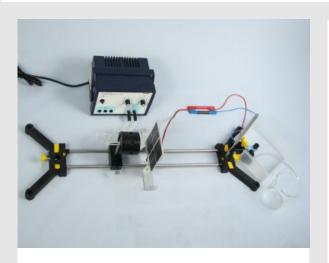
Für diesen Versuch gelten die allgemeinen Hinweise zum sicheren Experimentieren im naturwissenschaftlichen Unterricht.

Schülerinformationen

Motivation

Goldisthal - das größte
Pumpspeicherkraftwerk Deutschlands
(Bildquelle: Vattenfall)

<u>Link zur Bildquelle</u>


Wasserpumpen nutzen investierte mechanische Energie um Wasser von der Tiefe hochzupumpen. Dies ermöglicht Menschen Zugang zu Wasser auch ohne oberirdische Gewässer, indem man Grundwasser ans Tageslicht befördert.

Wasser, welches höher liegt hat mehr potentielle Energie inne, welche in kinetische Energie umgewandelt wird, sollte das Wasser die Möglichkeit haben an eine niedrigere Position zu fließen.

Deshalb kann man als Energiespeichermethode Wasser in höher gelegene Becken oder stehende Gewässer pumpen und bei Bedarf die Energie wieder nutzbar machen, indem man das Wasser durch eine Turbine leitet.

Aufgaben

Der Versuchsaufbau

In diesem Versuch wird eine Pumpe durch eine Solarbatterie mit elektrischer Energie versorgt.

Es wird untersucht, wie sich die Lichtintensität auf die Pumpleistung auswirkt.

Material

Position	Material	ArtNr.	Menge
1	PHYWE Stativfuß, teilbar, für 2 Stangen, d ≤ 14 mm	02001-00	1
2	Becherglas, Boro, niedrige Form, 400 ml	46055-00	1
3	Laborbecher, Kunststoff (PP), 100 ml	36011-01	1
4	Stativstange, Edelstahl, I = 600 mm, d = 10 mm	02037-00	2
5	Doppelbuchse, Paar, 1 x rot und 1 x schwarz	07264-00	2
6	Reiter für optische Profilbank	09822-00	1
7	Solarbatterie 4 Zellen 10,5 x 17 cm, mit Steckern, 2 V, 838 mA	06752-22	1
8	Halogenlampe mit Reflektor, 12 V / 20 W	05780-00	1
9	Halter für Halogenlampe mit Reflektor	05781-00	1
10	Halter für Solarzelle 3,3 x 6,5 cm, mit Steckern	06752-08	2
11	Maßband, I = 2 m	09936-00	1
12	Wasserpumpe / Generator	05753-00	1
13	Doppelmuffe, für Kreuz- oder T-Spannung	02043-00	1
14	Klemmhalter, d=16mm, mit Stiel	05764-00	1
15	Wanne, 150 mm x 150 mm x 65 mm, Kunststoff	33928-00	1
16	Stativstange, Edelstahl, I = 250 mm, d = 10 mm	02031-00	1
17	PHYWE Netzgerät, RiSU 2019 DC: 012 V, 2 A / AC: 6 V, 12 V, 5 A	13506-93	1

Tel.: 0551 604 - 0

Fax: 0551 604 - 107

Aufbau (1/4)

- **1.** Baue aus dem variablen Stativfuß und den beiden Stangen die Stativbank auf (Abb. 1 und 2).
- **2.** Spanne auf der einen Seite die kurze Stativstange senkrecht ein und befestige die Halogenlampe auf dem Reiter, welcher auf die Stativbank gesetzt wird (Abb. 3).
- **3.** Schließe die Halogenlampe an die Gleichspannungsbuchsen des Netzgerätes (Abb. 4).

Das Netzgerät ist ausgeschaltet.

Abbildung 2

Abbildung 3

Abbildung 4

Aufbau (2/4)

Abbildung 5

- **4.** Befestige an der kurzen Stativstange den Klemmhalter mit der Doppelmuffe (Abb. 5).
- **5.** Stelle eine Ecke der Wanne unter den Klemmhalter, befestige den Schlauch an der Pumpe und drücke die Pumpe in den Klemmhalter.

Die Pumpe soll etwa einen Abstand von 2 mm zum Wannenboden haben (Abb. 6).

8/13

Aufbau (3/4)

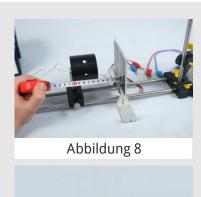


Abbildung 9

6. Verbinde mit den langen Kabeln das Gebläse mit dem Ausgang für Gleichspannung am Netzgerät (Abb. 7)

Das Netzgerät ist ausgeschaltet.

7. Schließe das Voltmeter wie in Abb. 8 parallel zum Windgenerator.

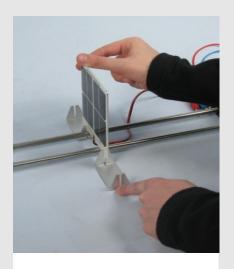


Abbildung 7

Aufbau (4/4)

Abbildung 10

Abbildung 11

- **8.** Fülle die Wanne mit Wasser, sodass die Pumpe etwa 2 cm im Wasser steht und stelle das große Becherglas unter das freie Schlauchende der Pumpe (Abb. 10).
- **9.** Der gesamte Versuchsaufbau sollte nun etwa wie in Abb. 11 aussehen.

Durchführung (1/2)

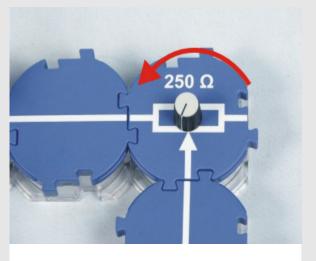


Abbildung 12

1. Achte darauf, dass das Schlauchende der Pumpe über dem großen Becherglas ist. Drehe die beiden Stellknöpfe für Spannung und Stromstärke ganz nach rechts und schalte das Netzgerät an (Abb. 12).

Was lässt sich beobachten?

2. Drücke den Schlauch leicht auf die Kante des Becherglases und notiere was zu beobachten ist unter (2). Verringere nun die Spannung von 12 V ganz langsam bis gerade so kein Wasser in das große Becherglas fließt, auch wenn man den Schlauch hinunter drückt.

Beobachte dabei die Halogenlampe.

Durchführung (2/2)

3. Tausche das große Becherglas gegen den kleinen Becher aus und drücke den Schlauch wieder ein wenig nach unten.

Achte auch hier wieder darauf, dass das Schlauchende über dem Becher ist.

Notiere deine Beobachtung in deinem Versuchsprotokoll.

Im Fall, dass die Pumpe nicht richtig läuft, helfen folgende Maßnahmen:

37079 Göttingen

- o Leichtes Klopfen der Pumpe auf den Wannenboden
- Mehrmaliges An- und Ausschalten des Netzgerätes
- o Drehen des Flügelrades an der Unterseite der Pumpe

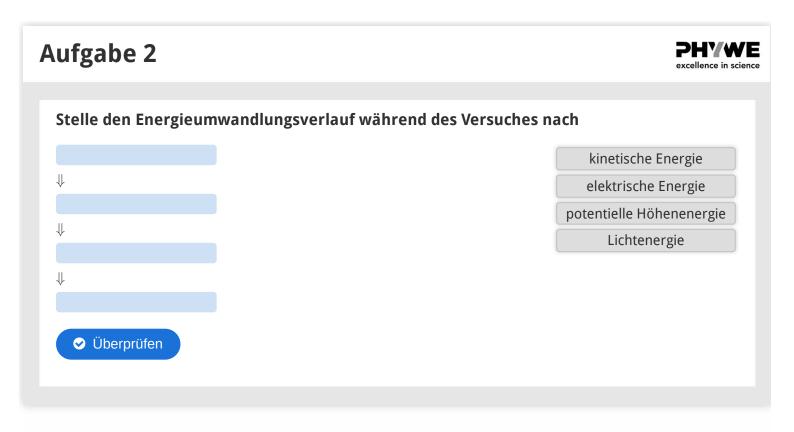
Tel: 0551 604 - 0 Robert-Bosch-Breite 10 Fax: 0551 604 - 107

Protokoll

Aufgabe 1

PH/WE excellence in science

Was ist die Gleichung für die potentielle Höhenenergie E_{pot} ?


$$E_{pot} = \frac{1}{2} m v^2$$

$$E_{pot} = m \cdot g \cdot h$$

$$E_{pot} = v \cdot A \cdot h$$

$$E_{pot} = m \cdot a \cdot h$$

Aufgabe 3 excellence in science Ziehe die Wörter in die richtigen Lücken Interagiert ein Objekt mit einem , so wird es beschleunigt. **Fallweg** Bewegt sich das Objekt trotz Beschleunigung nicht, so leistet es physikalische Höhenenergie entgegen dem Kraftfeld. Ein Beispiel für ein solches Kraftfeld ist Erdoberfläche der Erde, welches alle Objekte kontinuierlich zum Arbeit Erdmittelpunkt mit $9,81\frac{m}{c^2}$ beschleunigt. Deshalb fallen Dinge und Wasser fließt zum Kraftfeld niedrigsten verfügbaren Punkt. Ist der jedoch blockiert, so leistet Gravitationsfeld das Objekt Arbeit entgegen des Kraftfeldes und trägt also Energie in sich. Diese Energieform wird potentielle genannt, da sie von der Höhe in Relation zur abhängt.

folie			Punktzahl/Summe
Folie 19: Höhenenergie			0/1
Folie 20: Energieumwandlung			0/4
Folie 21: Beschleunigung im Kraf	tfeld		0/6
		Gesamtsumme	0/11

