The Peltier effect with ADM3

General information

Application

Broken Peltier element

Source photo: wikipedia

Peltier effect: refrigerating machine

Peltier elements are used in many areas for cooling, e.g. in cool boxes or for electronic devices.

They are always useful when normal cooling units take up too much space or are not profitable for small cooling capacities.

Other information (1/2) Previous $\widehat{}$ $\widehat{}$

Learning In the experiment, the Petier effect is to be illustrated and understood. In addition, an understanding of polarization is to be gained. **Tasks** The thermogenerator is to record the heating and cooling with normal polarity as well as reverse polarity with the two temperature sensors.

PHYWE

excellence in science

Safety instructions

The general instructions for safe experimentation in science lessons apply to this experiment.

For H- and P-phrases please refer to the safety data sheet of the respective chemical.

Theory

The basis for the Peltier effect is the contact of two semiconductors which have a different energy level (either p- or n-conducting) of the conduction bands.

If a current is passed through two successive contact points of these materials, thermal energy must be absorbed at one of the contact points in order for the electron to reach the energetically higher conduction band of the neighbouring semiconductor material, resulting in cooling.

At the other contact point, the electron falls from a higher to a lower energy level, so that energy is released here in the form of heat.

Equipment

Position	Material	Item No.	Quantity
1	PHYWE Demo Physics board with stand	02150-00	1
2	PHYWE Demo Multimeter ADM 3: current, voltage, resistance, temperature	13840-00	2
3	PHYWE Power supply, universal DC: 018 V, 05 A / AC: 2/4/6/8/10/12/15 V, 5 A	13504-93	1
4	Thermogenerator, Peltier element	04374-00	1
5	Heat insulating sheet, felt, 100 mm x 135 mm	04375-00	1
6	Apparatus carrier w. fix. magnet	45525-00	1
7	Beaker, Borosilicate, Iow-form, 400 ml	46055-00	2
8	Immersion probe NiCr-Ni, steel, -50400 °C	13615-03	2
9	Connecting cord, 32 A, 750 mm, red	07362-01	1
10	Connecting cord, 32 A, 750 mm, blue	07362-04	1

PHYWE excellence in science

Structure and implementation

Set-up

- $\circ~$ Set up the circuit according to the illustration.
- Place the thermal insulation plate on the equipment support and place the thermogenerator on it.
- The thermogenerator is connected to the DC output of the power supply unit.
- Insert the two temperature sensors into the holes provided in the thermogenerator. T1 should be the temperature of the leg with the blue socket.

Robert-Bosch-Breite 10 37079 Göttingen Procedure (1/2)

PHYWE excellence in science

Normal polarity

- Set a voltage of 2 V- on the scale of the power supply unit.
- Turn on the power supply and record the heating and cooling readings every minute.
- Stop measurement after 4 minutes and switch off the power supply.
- To cool the thermogenerator, fill the two 400 ml beakers with cold water, immerse both sides.
- Wait for temperature equalization.

Procedure (2/2)

PHYWE
excellence in science

Time [min] Temperature Temperature	Reverse polarity		
Blue Red	 Dry the thermogenerator. 		
2	 Reverse the polarity of the voltage at the thermogenerator. 		
3	 Switch on the power supply unit and repeat the measurement accordingly. 		

Evaluation (2/2)

Example measurement for normal polarity with horizontal line at the height of the output temperature

de				Score/Total
ide 12: Evaluation				0/5
			Total score	0/5
	Show solutions	C Repeat	Export text	