

Гальванические элементы из ряда концентраций, их потенциалы и способы вычислений

Учащиеся узнают, что электрическое напряжение можно также измерить между двумя одинаковыми полуэлементами и как использовать уравнение Нернста.

Химия	Физическая химия	Электрохимия	Электрохимические серии		
р Уровень сложности	ДД Размер группы	С Время подготовки	С Время выполнения		
средний	2	10 Минут	10 Минут		

Информация для учителей

Описание

Экспериментальная установка

Электрические напряжения могут быть измерены не только между полуэлементами из различных металлов в их солевых растворах, но и между полуэлементами одного типа, которые отличаются только концентрацией их солевых растворов. Такие пары одинаковых полуячеек с разной концентрацией соли называются "концентрационными цепочками".

Измеряемое напряжение таких концентрационных цепей подчиняется закону, который нашел свое математическое выражение в так называемом "уравнении Нернста".

Дополнительная информация для учителей

Предварите

Студенты уже должны уметь определять стандартные потенциалы и изготавливать необходимые электроды.

Принцип

Электрические напряжения могут быть измерены не только между полуэлементами из различных металлов в их солевых растворах, но и между полуэлементами одного типа, которые отличаются только концентрацией их солевых растворов.

Другая информация об учителях (2/5)

Цель

Учащиеся узнают, что электрическое напряжение можно также измерить между двумя одинаковыми полуэлементами и как использовать уравнение Нернста. Вводится термин "концентрационная цепь".

Задачи

Необходимо изготовить полуэлементы серебро/нитрат серебра, концентрация ионов серебра в которых отличается друг от друга на величину, равную десяти. Измеряются напряжения между возможными комбинациями этих полуэлементов. Их оценка приводит к выводу уравнения Нернста.

Robert-Bosch-Breite 10 Tel.: 0551 604 - 0 37079 Göttingen Fax: 0551 604 - 107

Другая информация об учителях (3/5)

Прочая информация (1/3)

Процессы на электродах:

Процесс окисления (анод):

 $Ag^- \rightarrow Ag^+ + e^-$ (Lösung geringerer Konzentration)

процесс восстановления (катод):

 $Ag^+ + e^- \rightarrow Ag$ (Lösung höherer Konzentration)

Другая информация об учителях (4/5)

Другая информация (2/3)

Из таблицы видно, что напряжения или разности потенциалов этих концентрационных цепей изменяются пропорционально логарифму коэффициента c1 и c2, а не пропорционально концентрации.

Lösungskonzentration c (red)	Lösungskonzentration c (ox)	$\frac{c_1}{c_2}$	$\frac{log c_1}{c_2}$	gemessene Spannung V- (20 °C)
0,1	0,01	10	1	1 * 0,058
0,01	0,001	10	1	1 * 0,058
0,001	0,0001	10	1	1 * 0,058
0,1	0,001	100	2	2 * 0,058 = 0,116
0,01	0,0001	100	2	2 * 0,058 = 0,116
0,1	0,0001	1000	3	3 * 0,058 = 0,174

Tel.: 0551 604 - 0 Fax: 0551 604 - 107

Другая информация о преподавателях (5/5)

Другая информация (3/3)

С помощью этого можно рассчитать разность потенциалов концентрационных цепей согласно уравнению

$$\Delta E = 0.058V \cdot \frac{\log c_1(re \, d)}{c_2(ox)}$$

Это соотношение применимо к моновалентным ионам, например, ионам серебра. Для многовалентных ионов напряжение уменьшается с ростом валентности (n). Затем он применяет

$$\Delta E = \frac{0.058V}{c_2(ox)}$$

С помощью этого "уравнения Нернста" можно рассчитать потенциалы концентрационных цепей.

Указания по технике безопасности

- Носите защитные очки.
- Фразы Н- и Р- см. в соответствующих паспортах безопасности.
- К этому эксперименту применимы общие инструкции по безопасному проведению экспериментов на уроках естествознания.

www.phywe.de

Информация для учеников

Мотивация

Экспериментальная установка

Вы уже узнали, что в современном мире мы больше не можем обходиться без батарей. Вы также можете изготовить различные электроды.

До сих пор электрические напряжения двух металлов измерялись в одной и той же концентрации соли. Однако это работает и в обратную сторону:

В этом эксперименте вы узнаете, что электрическое напряжение можно измерять и между одинаковыми полуэлементами, которые отличаются только концентрацией солевых растворов.

Задачи

Вам предстоит изготовить полуэлементы серебро/нитрат серебра, концентрация ионов серебра в которых отличается друг от друга на величину, равную десяти.

Измеряются напряжения между возможными комбинациями этих полуэлементов. Их оценка приводит к выводу уравнения Нернста.

Материал

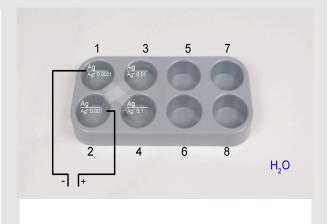
Позиция	Материал	Пункт No.	Количество
1	Цифровой мультиметр, 3 1/2 разрядный дисплей с NiCr-Ni термопарой	07122-00	1
2	Соединительный проводник, 2 мм-штепсель, 500 мм, красный	07356-01	1
3	Соединительный проводник, 2 мм-штепсель, 500 мм, синий	07356-04	1
4	Переходной штекер, гнездо 4 мм/ 2 мм, 2 шт.	11620-27	1
5	Зажим типа "Крокодил", с изоляцией, 2 мм, 2 шт.	07275-00	1
6	Блок с 8 углублениями, d=40 мм	37682-00	1
7	Крышки для блока с углублениями, 8 шт.	37683-00	1
8	Серебряная фольга, 150Х150Х0,1мм, 25 г	31839-04	1
9	Мензурка, высокая, 50 мл	46025-00	

Подготовка

Производство необходимых решений

- **Раствор нитрата серебра (0,1 моль/л):** Добавьте 8,49 г нитрата серебра в 250 мл дистиллированной воды. Хорошо перемешайте и доведите до 500 мл дистиллированной водой.
- **Раствор нитрата серебра (0,01 моль/л):** Добавьте 50 мл приготовленного раствора нитрата серебра (0,1 моль/л) к 450 мл дистиллированной воды.
- **Раствор нитрата серебра (0,001 моль/л):** Добавьте 50 мл приготовленного раствора нитрата серебра (0,01 моль/л) к 450 мл дистиллированной воды.
- ∘ **Раствор нитрата серебра (0,0001 моль/л):** Добавьте 50 мл приготовленного раствора нитрата серебра (0,001 моль/л) к 450 мл дистиллированной воды.

Подготовка (1\2)



Заполните измерительные ячейки с 1 по 4 указанными растворами нитрата серебра (рис. справа).

Начните с ячейки 1 с концентрацией 0,0001 моль/л, в ячейку 2 введите 0,001 моль/л, в ячейку 3 - 0,01 моль/І и в ячейку 4 - 0,1 моль раствора.

Затем соедините 4 измерительные ячейки токовыми клещами из полосок фильтровальной бумаги, но на этот раз не смоченной в растворе нитрата калия (рис. справа).

Вместо раствора нитрата калия дайте растворам нитрата серебра из соответствующих измерительных ячеек, которые должны быть соединены, подняться от погруженных концов бумаги в полоски, пока они не

Заполните измерительные ячейки

Robert-Bosch-Breite 10 Tel.: 0551 604 - 0 37079 Göttingen Fax: 0551 604 - 107

)4 - 0)4 - 107

Структура (2/2)

Убедитесь, что пересекающиеся полоски бумаги расположены близко друг к другу, чтобы обеспечить хорошее прохождение тока во всех направлениях.

Крышки на измерительные ячейки устанавливать не нужно. Однако держите наготове мензурку с чистой водой, чтобы промывать серебряные электроды после каждого измерения.

Затем подключите синий соединительный провод к гнезду заземления (минусовой вход) и красный соединительный провод к гнезду напряжения (плюсовой вход) измерительного прибора. На другие концы соединительных проводов установите зажимы типа "крокодил", которые, в свою очередь, удерживают серебряные электроды.

Экспериментальная установка

Выполнение работы

Теперь сначала измерьте напряжения между последовательными концентрациями раствора, погружая электрод, подключенный к гнезду заземления измерительного прибора, в раствор с более низкой концентрацией, а другой электрод - в раствор со следующей более высокой концентрацией (он всегда образует положительный полюс такой концентрационной цепочки).

Поэтому измеряются и отмечаются напряжения между полуэлементами 1 + 2, 2 + 3, 3 + 4. Однако, прежде чем окунать электроды в следующие более концентрированные растворы, кратко промойте их в стакане с чистой (дистиллированной) водой (стряхните капли).

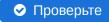
Протокол

Задание 1

PHYWE excellence in science

Какие процессы происходят на электродах (анод, катод)?

- $Ag^- \rightarrow Ag^+ + e^-$ (Lösung höherer Konzentration) (анод, окисление)
- $Ag^+ + e^- \rightarrow Ag$ (Lösung höherer Konzentration) (КАТОД, ВОССТАНОВЛЕНИЕ)
- $Ag^- o Ag^+ + e^-$ (Lösung geringerer Konzentration) (анод, окисление)



Задание 2

Что можно рассчитать с помощью уравнения Нернста?

- О Уравнение Нернста может быть использовано для расчета силы тока в параллельных цепях.
- О Для расчета разности потенциалов концентрационных цепей можно использовать уравнение Нернста.
- Уравнение Нернста может быть использовано для расчета разности потенциалов окислительновосстановительных пар.
- О Уравнение Нернста может быть использовано для расчета силы тока в последовательных цепях.

Задание 3

Выберите уравнение Нернста.

- $\Delta E = \frac{0,058V}{c_2(ox)}$
- $\Delta E = \frac{0.058V}{2c_2(ox)}$
- $\Delta E = 5 + \frac{0,058V}{c_2(ox)}$
- Проверьте

лайд				Оценка/Всего
Слайд 18: Уравнение реакции анод	1			0/2
Слайд 19: уравнение Нернста				0/1
Слайд 20: Уравнение Нернста 2				0/1
			Всего	0/4

