Shielding of beta radiation with Cobra SMARTsense

Physics	Modern Physics	Radioactivity	
Difficulty level	QQ Group size	C Preparation time	Execution time
medium	2	10 minutes	10 minutes

PHYWE excellence in science

Teacher information

Application

Experimental setup for shielding of radioactive radiation

Since the energy values of the β rays are continuously distributed in the range from 0 to a maximum value, the dependence of radiation intensity and material thickness can only be described approximately by the exponential law

$$I(d) = I_0 e^{-\mu \cdot d}$$

, where $\boldsymbol{\mu}$ is the attenuation coefficient and d is the material thickness.

For the practical handling of ionizing radiation, the term half-value thickness x1/2 is used, and its value can be read from the graphic representation of the dependence of the counting rate and material thickness.

Other teacher information (2/2) Exercise Learning objective Students recognize the influence of the material and the material thickness to shield beta rays. Tasks The students investigate the influence of different materials such as aluminium, Plexiglas, index cards and their material thickness on the shielding of beta rays.

Robert-Bosch-Breite 10 37079 Göttingen info@phywe.de

www.phywe.de

Safety instructions (2/2)

 If there is not enough time for the experiments, it is of course possible to do without repeating the measurements and averaging, at the expense of accuracy.
 Furthermore, the number of measurements can be reduced by combining several shielding plates.

 $\circ\,$ The general instructions for safe experimentation in science lessons apply to this experiment.

PHYWE excellence in science

Student Information

Motivation

Radioactive material shielded by lead

If you think of range and shielding of radioactive radiation, as well as radiation protection, thick protective layers of concrete or lead quickly come to mind. But which materials are suitable for shielding against beta rays and how does their thickness affect the radiation?

Investigate the strength of different materials needed to reduce the intensity of beta rays from a radioactive source by half.

Tasks

Experimental set-up with a sheet of paper in the beam path

- $\circ\,$ Record the pulse rate of a α emitter for different ranges first in the air and then with a sheet of paper in the beam path
- $\circ\;$ Compare the measurement series and conclude on the range of α particles.
- Explain what determines the range in the air.

Equipment

Position	Material	Item No.	Quantity
1	Cobra SMARTsense- Radioactivity (Bluetooth + USB)	12937-01	1
2	Base plate for radioactivity	09200-00	1
3	Holder for SMARTsense counter tube on holding magnet	09207-00	1
4	Plate holder on fixing magnet	09203-00	1
5	Absorption material f.student exp	09014-03	1
6	Columbite, natural mineral	08464-01	1
7	measureAPP - the free measurement software for all devices and operating systems	14581-61	1

Set-up (1/3)

PHYWE excellence in science

The Cobra SMARTsense and measureAPP are required to measure radioactivity. The app can be downloaded free of charge from the App Store - QR codes see below. Check whether Bluetooth is activated on your device (tablet, smartphone).

Set-up (2/3)

Complete test setup with radioactive sample

 Clamp the Geiger-Müller counter tube into the counter tube holder, place it on the plate holder so that it is vertically above the mounting plate.

Set-up (3/3)

Complete test setup with radioactive sample

PHYWE excellence in science

- Connect the Geiger-Müller counter tube to the sensor unit.
- Connect the sensor to the PHYWE Measure app on the tablet by pressing the Bluetooth button for 3 seconds. Then the radioactivity sensor can be selected in the app.

Procedure (1/2)

Test setup without absorber material in the beam path

- First determine the zero rate. To do this, read three measured values without the sample and enter them in the table in the protocol.
- To examine the sample, push the columbit sample under the Geiger-Müller counter tube. Push the counting tube down until the distance to the columbit sample is about 1 cm.
- Record three measured values and note them in the table in the protocol.

Procedure (2/2)

Test setup without absorber material in the beam path

- Cover the columbit probe with an aluminium plate and record the pulse rate three times. (Figure 3) Repeat this measurement with several aluminum plates and note the measured values in the table in the protocol.
- Carry out the same series of experiments with the Plexiglas plates and index cards. Note the results in the table as well.

Report

Robert-Bosch-Breite 10 37079 Göttingen Tel.: 0551 604 - 0 Fax: 0551 604 - 107

Monitori	ng						PHYWE excellence in science
Note the measu the zero rate.	ured values for	r aluminium. C	alculate the m	iean value and	the difference	e of the mea	n value to
Measurement	Zero	0	1	2	3	4	Plates
1							Imp/min
2							Imp/min
3							Imp/min
Average							Imp/min
Difference							Imp/min
Thickness							cm

Monitoring PHVM excellence in sc						PHYWE excellence in science	
Note the measu zero rate.	ired values for	Plexiglas. Ca	lculate the me	an value and th	e difference o	f the mean v	alue to the
Measurement	Zero	0	1	2	3	4	Plates
1							Imp/min
2							Imp/min
3							 Imp/min
Average							Imp/min
Difference							Imp/min
Thickne							cm
					1	1	

Monitoring						PHYWE excellence in science	
Note the measu zero rate.	ired values for	r paper. Calcul	ate the mean	value and the c	lifference of th	ne mean valu	ue to the
Measurement	Zero	0	1	2	3	4	Plates
1							Imp/min
2							Imp/min
3							Imp/min
Average							Imp/min
Difference							Imp/min
Thickne							cm

Monit	oring							YE
1 calcula	te the ratio o	of the differen	uces to the th	nickness of	the absorbe	or materials us	sed	
r. calcula		Aluminium		IICKIIESS OI		Plexiglas	seu	
Number of plates	Thickness	Difference Imp/min	ratio		Thickness	Difference Imp/min	ratio	
0								_
1				-				
2				-				
3				-				
4				-				
		1		1				

Task 1

PHYWE excellence in science

1. calcula the thickr	te the ratio c ness of the al	of the differen osorber mate	ices to rials used	2. what law can be read from the ratio of the thickness D and the difference Z?
Number of plates	Thickness	Difference Imp/min	ratio	$Z=Z_0\cdot e^{-\mu\cdot D}$
0				
1				$Z=\mu Z_0\cdot D$
2				
3				$Z=Z_0/D$
4				
		I I		1

