
The detection of carbon with limewater (Item No.: P7170100)

organic compounds, tests for carbon, detection with lime-water

Task and equipment

Information for teachers

Learning objectives

- As organic substances contain carbon, carbon dioxide is always formed during their combustion.
- Carbon dioxide can be detected with limewater.

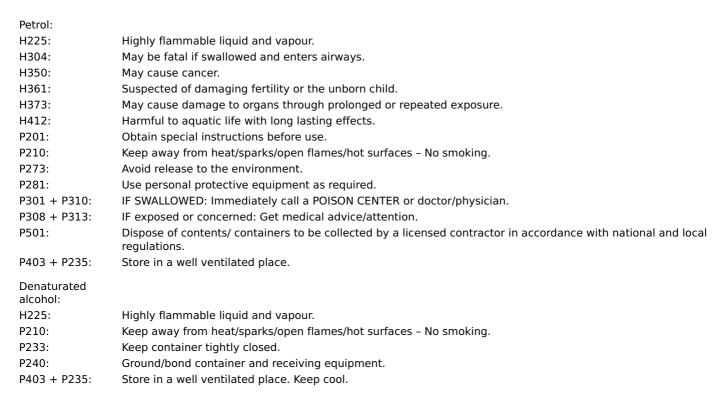
Notes on setup and procedure

Preparation:

Since the detection works better with fresh limewater you should provide freshly prepared limewater if possible.

Remarks on the students experiments:

To keep the danger of burnings as low as possible, the experiment should be stopped as soon as the limewater begins to show turbidity.



Hazard and Precautionary statements

Teacher's/Lecturer's Sheet

Printed: 13.04.2017 13:51:23 | P7170100

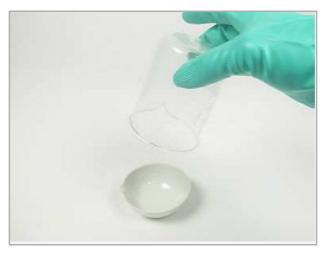
Hazards

- Petrol and raw alcohol are highly inflammable. Extinguish all open flames! When the liquid has been taken out, close the bottles and remove them!
- Calcium hydroxide solution is caustic. Do not allow it to contact skin!
- Wear protective glasses and gloves!

Waste disposal

- Collect the limewater for further similar experiments.
- Transfer contents of the beakers to the container for acid and alkali wastes.

DHYWE


The detection of carbon with limewater (Item No.: P7170100)

Task and equipment

Task

Which substance is always formed when organic matter is burnt?

Examine the combustion of organic substances.

Equipment

Position No.	Material	Order No.	Quantity
1	Wash bottle, 250 ml, plastic	33930-00	1
2	Porcelain dish, 75ml, d = 80 mm	32516-00	2
3	Protecting glasses, clear glass	39316-00	1
4	Rubber gloves, size S (7)	39325-00	1
5	Glass beaker DURAN®, short, 150 ml	36012-00	1
6	Glass beaker DURAN®, short, 250 ml	36013-00	1
7	Pipette with rubber bulb	64701-00	2
	Stand.petrol b.p.65-95 C 1000 ml	31311-70	1
	Water, distilled 5 l	31246-81	1
	Denaturated alcohol (spirit for burning), 1000 ml	31150-70	1
	Calcium hydroxide solution 1000ml	31458-70	1
	Wood splints, package of 100	39126-10	1
Additional material			
	Lighter or something similar		
	Candle (Tealights)		

Set-up and procedure

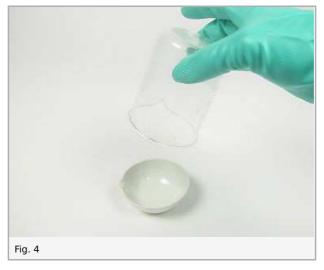
Set-up

Hazards

- Petrol and raw alcohol are highly inflammable. Extinguish all open flames! When the liquid has been taken out, close the bottles and remove them!
- Calcium hydroxide solution (limewater) is caustic. Do not allow it to contact skin!
- Wear protective glasses and gloves!

Procedure

Pour a little calcium hydroxide solution in the 250 ml beakers and swivel it around so that the inner surface is wetted with the solution and drops of solution adhere to it (Fig. 1). Do not swivel the beaker too heavily to prevent the solution from splashing. Pour the remaining solution into the 150 ml beaker.


Use the pipette to transfer about 10 drops of petrol to one of the porcelain dishes (Fig. 2). Ignite the petrol with a wood splint and hold the inverted beaker above it (Fig. 3+4). (Take care not to burn your hands!)



Rinse the beaker with distilled water and wet the surface with calcium hydroxide solution again. Use the second pipette and porcelain dish to carry out the same procedure as before using denaturated alcohol instead of petrol.

Rinse the beaker with distilled water and wet the surface with calcium hydroxide solution again. Light a candle and hold the inverted beaker above it (Fig. 5).

At the end of the experiment collect the remaining calcium hydroxide solution in an appropriately labelled container.

Waste disposal

excellence in science

Robert-Bosch-Breite 10 D - 37079 Göttingen Tel: +49 551 604 - 0 Fax: +49 551 604 - 107 info@phywe.de www.phywe.com

Student's Sheet

Printed: 13.04.2017 13:51:23 | P7170100

- Collect the limewater for further similar experiments.
- Transfer contents of the beakers to the container for acid and alkali wastes.

PHYWE excellence in science

advanced

Report: The detection of carbon with limewater

Result - Observations
Note your observations on
a) Petrol.
b) Denaturated alcohol.
c) Candle.

Evaluation - Question 1

Draw conclusions from your observations and thereby answer the question in the header.

Robert-Bosch-Breite 10 D - 37079 Göttingen Tel: +49 551 604 - 0 Fax: +49 551 604 - 107 info@phywe.de www.phywe.com

Student's Sheet

Printed: 13.04.2017 13:51:23 | P7170100

Evaluation - Question 2

Formulate the equation for the reaction which took place.

Robert-Bosch-Breite 10 D - 37079 Göttingen Tel: +49 551 604 - 0 Fax: +49 551 604 - 107 info@phywe.de www.phywe.com