

Verwandte Begriffe

Röntgenröhren, Bremsstrahlung, charakteristische Röntgenstrahlung, Energieniveaus, Kristallstrukturen, Gitterkonstante, Absorption von Röntgenstrahlung, Absorptionskanten, Interferenz, Bragg-Gleichung.

Prinzip

Eine Röntgenröhre mit einer Wolframanode erzeugt Röntgenstrahlung, die mit Hilfe eines Einkristalls als Funktion des Bragg-Winkels selektiert wird. Ein Geiger-Müller-Zählrohr registriert die Intensität der Strahlung. Aus den Glanzwinkelwerten der charakteristischen Röntgenlinien wird deren Energie bestimmt.

Material

1	XR 4.0 expert unit, Röntgengerät 35 kV	09057-99
1	X-ray Goniometer für Röntgengerät 35 kV	09057-10
1	X-ray Einschub mit Wolfram-Röntgenröhre	09057-80
1	Zählrohr Typ B	09005-00
1	X-ray LiF-Einkristall in Halter	09056-05
1	XR measure 4.0 software	14414-61
1	Datenkabel USB Steckertyp A/B	14608-00
1	X-ray Blendentubus d = 2 mm	09057-02

Zusätzlich erforderlich PC, Windows® XP oder höher

Dieser Versuch ist in den Erweiterungssets: XRP 4.0 X-ray Festkörper, XRC 4.0 X-ray Charakterisierung und XRS 4.0 X-ray Strukturanalyse enthalten.

Abb. 1: P2542801

1

Charakteristische Röntgenstrahlung

Aufgaben

- 1. Nehmen Sie mit Hilfe des LiF-Einkristalls als Analysator das von der Wolframanode ausgehende Röntgenspektrum als Funktion des Bragg-Winkels auf.
- 2. Bestimmen Sie die Energien der charakteristischen Wolfram-Röntgenstrahlen aus den Spektren und vergleichen Sie Ihre Werte mit den aus dem entsprechenden Termschema ermittelten Werten.

Aufbau

Hinweis

Schließen Sie das Goniometer und das Geiger-Müller-Zählrohr an die entsprechenden Buchsen im Experimentierraum an (siehe Kennzeichnung in Abb. 2). Der Goniometerblock mit eingesetztem Analysatorkristall soll sich in der rechten Endposition befinden. Das Geiger-Müller-Zählrohr mit seiner Halterung wird am hinteren Anschlag der Führungsstangen arretiert. Vergessen Sie nicht, die Zählrohr-Blende vor dem Zählrohr zu montieren (Siehe Abb. 3). Der Blendentubus mit 2-mm-Durchmesser wird zur Kollimierung des Röntgenstrahls in den Strahlausgang des Röhreneinschubs eingesetzt (Abb. 3).

Um den Aufbau zu kalibrieren, stellen Sie zunächst sicher, dass der richtige Kristall in den Goniometer-Parametern eingegeben ist. Wählen Sie dann "Menü", "Goniometer", "Autokalibrierung". Nun ermittelt das Gerät die optimale Stellung von Kristall und Goniometer zueinander und im Anschluss die Position des Peaks.

ters sowie zum Umgang mit den Einkristallen entnehmen Sie

bitte den entsprechenden Bedienungsanleitungen.

Details zur Bedienung des Röntgengeräts und des Goniome- Abb. 2 Anschlüsse im Experimentierraum

N₂

Abb. 3: Aufbau am Goniometer

excellence in science

TEP 5.4.28-01

PHYWE

Durchführung

- Der PC und das Röntgengerät werden mit Hilfe des Datenkabels über die USB Buchse verbunden.
- Starten Sie nun das "Measure"-Programm: das Röntgengerät erscheint auf dem Bildschirm
- Indem Sie die verschiedenen Funktionen auf und unter dem abgebildeten Gerät anklicken, können Sie nun das Gerät vom Computer aus bedienen. Alternativ können die Parameter auch am Gerät geändert werden – das Programm übernimmt die entsprechenden Einstellungen automatisch.
- Wenn Sie auf den Experimentierraum klicken, können Sie die Parameter für das Experiment verändern. Wählen Sie die Einstellungen wie in Abb. 6 angegeben.
- Wenn Sie auf die Röntgenröhre klicken, können Sie Spannung und Strom der Röntgenröhre ändern. Wählen Sie die Einstellungen wie in Abb. 7 angegeben.
- Starten Sie das Experiment, indem Sie auf den Experiment Hilfe

roten Kreis drücken

- Nach der Messung erscheint die Abfrage:

Markieren Sie den ersten Punkt und bestätigen Sie mit OK. Die Messwerte werden nun direkt an die Software measure übertragen.

- Am Ende dieser Versuchsanleitung ist eine kurze Einführung in die Auswertung der erhaltenen Spektren angefügt.

🕨 🔳 📾 🖪 🙆 🕄

Hinweis

Eine Bestrahlung des Geiger-Müller-Zählrohres durch den primären Röntgenstrahl sollte über einen längeren Zeitraum vermieden werden.

Abb. 4: Anschluss des Computers

Abb. 5: Teil der Bedienoberfläche in der Software

Übersicht Einstellungen am Goniometer und Röntgengerät:

- 2:1-Kopplungsmodus
- Integrationszeit 5-6 s (Gate-Timer); Winkelschrittweite 0,1°
- Winkelbereich: 4°-80° (LiF-Einkristall)
- Anodenspannung U_A = 35 kV; Anodenstrom I_A = 1 mA

3

Charakteristische Röntgenstrahlung von Wolfram

Röhreneinstellungen

Röhreninformationen

XR4.0 X-ray Plug-in W tube

Bestellnummer 09057-80	www.pł
Röhreneinstellungen	
Röhrenspannung	35,0
Emissionsstrom	1,00
OK	
F	Bestellnummer 09057-80 Röhreneinstellungen Röhrenspannung Emissionsstrom

Bedienungsanleitung

www.phywe.com

Abb 6: Einstellungen für das Goniometer; LiF-Kristall

Theorie

TEP

5.4.28-

01

oniometereinstellunger

XR4.0 X-ray Goniometer

09057-10

Geräteinformationer

Bestell-Nr

Geräte

Modu Krista Absor

Wenn Elektronen mit hoher kinetischer Energie auf die metallische Anode der Röntgenröhre treffen, werden Röntgenstrahlen mit einer kontinuierlichen Energieverteilung (Bremsstrahlung) erzeugt. Dem Spektrum der Bremsstrahlung sind zusätzlich diskrete Linien überlagert. Wird nämlich ein Atom des Anodenmaterials durch Elektronenstoß z.B. in der *K*-Schale ionisiert, so kann ein Elektron aus einer höheren Schale den freigewordenen Platz unter Aussendung eines Röntgenquants entspricht der Energiedifferenz der beiden am Prozess beteiligten Schalen. Da die Energiedifferenz jedoch atomspezifisch ist, nennt man die so erzeugte Strahlung auch charakteristi-

Abb. 8: Bragg-Streuung an einem Netzebenenpaar

Wenn ein Röntgenstrahl der Wellenlänge λ auf die einzelnen Netzebene eines Einkristalls unter dem Glanzwinkel ϑ trifft, so interferieren die an den Netzebenen reflektierten Strahlen konstruktiv miteinander, wenn ihr Gangunterschied Δ einem Ganzzahligen der Wellenlänge entspricht.

Nach Abb. 8 gilt für konstruktive Interferenz die sog. Bragg-Gleichung:

$$2d\sin\vartheta = n\lambda$$

sche Röntgenstrahlung.

$$(d = Netzebenabstand; n = 1, 2, 3,...)$$

Ist der Netzebenenabstand *d* bekannt, kann die Wellenlänge λ aus dem Glanzwinkel ϑ ermittelt werden. Die Energie der Strahlung ergibt sich dann aus:

$$E = h \cdot f = \frac{hc}{\lambda} \tag{2}$$

Mit (1) und (2) erhält man schließlich:

$$E = \frac{(n \cdot h \cdot c)}{(2d\sin\vartheta)}$$

HYWE excellence in science

Abb 7: Einstellung der Spannung und der Stromstärke

PHYWE

x

Abbrechen

Bedienungsanleitung

hywe.com

(1)

(3)

4

TESS expert PHYWE

TEP
5.4.28-
01

Planck-Konstante	h	= 6,6256·10 ⁻³⁴ Js
Lichtgeschwindigkeit	с	= 2,9979·10 ⁸ m/s
Netzebenenabstand LiF (200)	d	= 2,014·10 ⁻¹⁰ m
Äquivalent	1 eV	= 1,6021·10 ⁻¹⁹ J

Abb. 9 zeigt das Energieniveauschema eines Wolframatoms. Da die Energie der K-Schale ungefähr 70 keV beträgt, die höchste Energie des primären Elektronenstrahls aber nur 35 keV ist, kann die K-Schale mit diesem Gerät nicht angeregt werden. Es kann nur das *L*-Level ionisiert werden. Abb. 9 zeigt die nach den quantenmechanischen Auswahlregeln möglichen *L*-Übergänge für die Dipol-Strahlung bis zur *O*-Schale. Die Quadrupol-Strahlung kann wegen ihrer geringeren Intensität vernachlässigt werden.

Auswahlregeln für die Dipolstrahlung: $\Delta l = \pm 1$ und $\Delta j = 0, \pm 1$

(*l* = Bahndrehimpuls, *j* = Gesamtdrehimpuls)

Auswertung

Aufgabe1: Nehmen Sie mit Hilfe des LiF-Einkristalls als Analysator das von der Wolframanode ausgehende Röntgenspektrum als Funktion des Bragg-Winkels auf.

In Abb. 10 ist das mit einem LiF-Einkristall analysierte Röntgenspektrum von Wolfram dargestellt. Dem kontinuierlichen Bremsspektrum sind scharf ausgeprägte Linien überlagert, deren Glanzwinkellagen bei Variation der Anodenspannung unverändert bleiben. Dieses deutet darauf hin, dass es sich hierbei um charakteristische Röntgenlinien handelt.

In Abb 11 und 12 sind Ausschnitte des Spektrums dargestellt, die mit Hilfe der Zoom-Funktion der Measure-software erstellt wurden. So können dicht beieinander liegende und weniger intensive Linien besser erkannt werden. Insgesamt können bis zu 27 Linien unterschieden werden.

Die Auswertung (siehe Tabelle) zeigt, dass im Winkelbereich von $10^{\circ} < \vartheta < 30$ nur Linien erster Ordnung erhalten werden. Sie erreichen auch die höchste Intensität. Im Bereich von $30^{\circ} < \vartheta < 80^{\circ}$ fallen die Linien mit n = 2 und n = 3. Die Aufspaltung der Linien 2 und 10 in α_1 und α_2 bzw. γ_2 und γ_3 ist nur im Bereich von n = 2 zu erkennen. Die Linie 11 kann eindeutig der K_{α} -Linie von Kupfer zugeordnet werden. Die kleine runde Wolfram Anode ist in einen zylindrischen Kupferstab eingelassen, der auch teilweise von den Elektronen getroffen wird.

Abb. 10: Die Intensität der W-Röntgenstrahlung als Funktion des Glanzwinkels θ; Analysatorkristall: LiF

Aufgabe 2: Bestimmen Sie die Energien der charakteristischen Wolfram-Röntgenstrahlen aus den Spektren und vergleichen Sie Ihre Werte mit den aus dem entsprechenden Termschema ermittelten Werten.

Spalte B der untenstehenden Tabelle enthält die aus den Abb. 6 bis 8 ermittelten Glanzwinkelwerte ϑ und die daraus mit Hilfe von (3) berechneten Energiewerte für die charakteristischen Röntgenlinien von Wolfram. Die Wellenlänge λ und die zugehörige Energie E_{Exp} , die mit Hilfe der Formeln 1 und 2 bestimmt wurden sind in den Spalten D und E aufgeführt. Spalte H zeigt die Energiewerte E_{Lit} , die mit Hilfe von Abb 3 errechnet wurden. Die Übereinstimmung zwischen den beiden Energiewerten belegt die Zuordnung der Linien zu den verschiedenen Übergängen. Wie erwartet, treten nur die Linien auftreten, die den Auswahlregeln entsprechen. Es sind nicht alle möglichen Übergänge zu erkennen, da bei einigen die Intensität zu gering ist.

Α	В	С	D	E	F	G	н
Line	9/°	п	λ/pm	$E_{exp.}$ / eV	Linie	Übergang	E _{Lit.} / eV
1	14.69	1	102.15	12138	<i>γ</i> 4	L_1O_3	12063
2	15.23	1	105.81	11717	γ 3/2	L_1N_3/L_1N_2	
2	15.23	1	105.81	11717	γ _{3/2}	L_{1N3}/L_1N_2	
3	15.74	1	109.27	11346	Y 1	L_2N_4	11286
4	16.28	1	112.92	10980	γ5	L_2N_1	10949
5	17.92	1	123.94	10003	β_2	L_3N_5	9961
6	18.21	1	125.87	9849	β_3	L_1M_3	9818
7	18.47	1	127.61	9716	β_1	L_2M_4	9673
8	18.79	1	129.74	9556	eta_4	L_1M_2	9525
9	20.60	1	141.72	8748	η	L_2M_1	8725
10	21.47	1	147.43	8409	$\alpha_{1/2}$	L_3M_5/L_3M_4	
11	22.51	1	154.21	8040	Cu- <i>Kα</i> _{1/2}		
12	24.57	1	167.49	7402	l	L_3M_1	7387
13	31.80	2	106.13	11682	γз	L ₁ N ₃	11674
14	32.01	2	106.76	11613	γ ₂	L_1N_2	11608

TEP Charakteristische Röntgenstrahlung **PHYWE** 5.4.28von Wolfram 01 2 109.79 15 33.03 11294 L_2N_4 11286 γ1 16 38.12 2 124.33 9972 β_2 L_3N_5 9961 2 38.80 126.20 9818 17 9824 β_3 L_1M_3 18 39.52 2 128.16 9674 β_1 L_2M_4 9673 2 19 40.24 130.10 9529 β_4 9525 L_1M_2 2 20 47.12 147.58 8401 α_1 L_3M_5 8397 2 21 47.58 148.68 8339 L_3M_4 8335 α_2 22 54.88 3 109.71 11300 L_2N_4 11286 γ1 23 56.47 2 167.88 7385 l L_3M_1 7387 24 67.90 3 124.28 9976 β_2 9961 L_3N_5 25 70.09 3 126.12 9831 β_3 9818 L_1M_3 3 26 72.66 128.04 β_1 9673 9683 L_2M_4 27 75.79 3 130.03 9535 β_4 L_1M_2 9525

Measure

Mit der Software "Measure" können die Peaks aus dem Spektrum mit wenig Aufwand bestimmt werden:

- Klicken Sie auf den Button und markieren Sie den Bereich, in dem Sie die Peaks bestimmen wollen.
- Klicken Sie dann auf das Zeichen 🕍 "Peakanalyse".
- Es erscheint das Fenster "Peakanalyse" (siehe Abb. 13).
- Klicken Sie nun auf "Berechnen".
- Falls nicht alle gewünschten Peaks berechnet wurden (oder zu viele) stellen Sie die Fehlertoleranz entsprechend ein.
- Setzen Sie eine Haken in das Kästchen "Ergebnisse einzeichnen", um die Daten der Peaks direkt im Spektrum anzeigen zu lassen.

Unter der Hilfe-Funktion der Software "Measure" finden Sie weitere, detaillierte Erklärungen der vielen Funktionen des Programms.

Abb. 13: Automatische Peakanalyse mit "Measure"