

Определение длины и положения невидимого объекта

Общая информация

Описание

Экспериментальная установка

Большинство применений рентгеновских лучей основано на их способности проходить сквозь вещество. Поскольку эта способность зависит от плотности вещества, становится возможным получение изображений внутренних частей объектов и даже людей. Это находит широкое применение в таких областях, как медицина или безопасность.

Robert-Bosch-Breite 10 Tel.: 0551 604 - 0 37079 Göttingen Fax: 0551 604 - 107

Дополнительная информация (1/2)

Предварительные

знания

Принцип

Предварительные знания, необходимые для этого эксперимента, приведены в разделе "Теория".

В этом эксперименте на основе рентгеновского изображения учащиеся учаться определять длину и положение объекта. В качестве модели используется металлический штифт, встроенный в деревянный брусок. Этот эксперимент также является прекрасным подготовительным упражнением для демонстрации принципа работы компьютерной томографии.

Дополнительная информация (2/2)

Обучение

цель

Задачи

Цель этого эксперимента - ознакомиться с методами радиоспектроскопии

- 1. Выполните рентгенографию модели имплантата в двух плоскостях, смещенных на 90 ° относительно друг друга. Сделайте снимок изображения на флуоресцентном экране.
- 2. Вычислите истинную длину встроенного металлического штифта с учетом коэффициента увеличения, который необходимо определить.
- 3. Определите пространственное положение металлического штифта.

www.phywe.de

Теория (1/3)

На рисунке 1 показаны примеры фотографий модели имплантата.

На рис. 2 Произвольное наклонное положение металлического штифта длиной l в трехмерном пространстве.

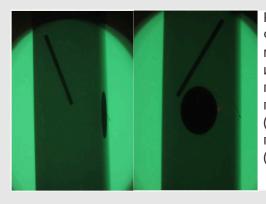
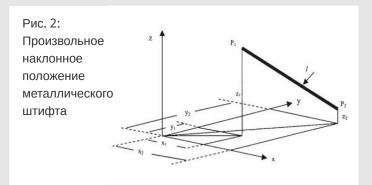



Рис. 1: Фотографии модели имплантата; проекция в плоскости xz (слева) и в плоскости yz (справа)

Теория (2/3)

Длина l штифта с его концами $\mathrm{P}_1(\mathrm{x}_1,\mathrm{y}_1,\mathrm{z}_1)$ и $\mathrm{P}_2(\mathrm{x}_2,\mathrm{y}_2,\mathrm{z}_2)$ равна:

$$l = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2} = \sqrt{l_x^2 + l_y^2 + l_z^2} \tag{1}$$

Поскольку металлический штифт облучается коническим пучком рентгеновских лучей и находится на определенном расстоянии от плоскости пленки, он проецируется на плоскость пленки в увеличенном виде. Для определения степени увеличения модель имплантата оснащена металлическим эталонным диском диаметром d=30 мм. Если проекция диаметра диска на пленке d*, то увеличение равно V=d*/d. Отсюда, реальная длина металлического штифта составляет $\mathbf{l}_{\mathrm{V}}=\mathbf{l}/\mathrm{V}$.

Теория (3/3)

На рисунке 3 показаны проекции металлического штифта для двух плоскостей модели имплантата, смещенных на 90° по отношению друг к другу. Для оценки в соответствии с рисунком 5 рекомендуется распечатать фотографию как можно большего размера и определить соответствующие длины с помощью штангенциркуля.

В качестве альтернативы можно использовать графическую программу.

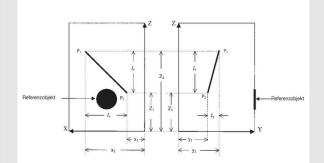


Рис. 3: Схематическое изображение проекции металлического штифта в плоскости xz (слева) и в плоскости yz (справа)

Оборудование

Позиция	Материал	Пункт No.	Количество
1	XR 4.0 X-гау Базовая рентгеновская установка, 35 кВ	09057-99	1
2	XR4 Съёмная рентгеновская трубка Plug-in Cu tube	09057-51	1
3	XR 4.0 X-rav Рентгеновское изображение, расширение	09155-88	1

Подготовка и выполнение работы

Подготовка

Рис. 4: Экспериментальная установка

Выполнение работы

Поместите модель имплантата непосредственно перед флуоресцентным экраном так, чтобы оба они находились на оптической скамье как можно дальше справа. Расстояние между передней частью модели и выпускной трубкой рентгеновского съемного блока составляет примерно 30 см. Не используйте для облучения диафрагменную трубку.

- $\circ\,$ Установите напряжение $U_A=35\, {
 m kB}$ и анодный ток $I_A=1\, {
 m mA}.$
- Закрепите на оптической скамье камеру на скользящем креплении, затем выберите ночной режим и отключите вспышку.
- Полностью затемните помещение либо накройте устройство защитной крышкой.
- Для предотвращения дрожания камеры рекомендуется делать снимок с автоматическим спуском камеры (автоспуском).
- Затем поверните модель имплантата на 90 ° вокруг его продольной оси и повторите процедуру.

Оценка

Примерные результаты

Оценка примера эксперимента дала следующие результаты:

$${
m l_x} = 52.0$$
 mm, ${
m l_y} = 35.0$ mm, ${
m l_z} = 71.0$ mm $\,$ if $V = 46,0/30,0$ mm = 1,533.

Таким образом,
$$l_{\mathrm{x}}^* = 33.9\,\mathrm{мм}$$
, $l_{\mathrm{v}}^* = 22.8\,\mathrm{мм}$, $l_{\mathrm{z}}^* = 46.3\,\mathrm{мм}$

Эти значения дают: l = 61,74 мм и $l_{\rm V} = 60.06$ мм (фактическая длина металлического штифта (при изготовлении) составляет 60,0 мм).

Исходя из длины проекции $l_x, l_y, l_z \ l$ на соответствующих осях, соответствующие углы рассчитываются следующим образом:

$$\cos(lpha)=rac{
m l_x}{
m l};\;\cos(eta)=rac{
m l_y}{
m l};\;\cos(\gamma)=rac{
m l_z}{
m l} \qquad \Rightarrow \qquad lpha=53.6^\circ;\;eta=67.7^\circ;\;\gamma=39.6^\circ$$

