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The goal of this experiment is to investigate the quantisation of the angular momentum.
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General information

Application

Setup

The Stern–Gerlach experiment demonstrated that the
spatial orientation of angular momentum is quantized.
Thus an atomic-scale system was shown to have
intrinsically quantum properties. In the original
experiment, silver atoms were sent through a spatially
varying magnetic field, which deflected them before they
struck a detector screen, such as a glass slide. Particles
with non-zero magnetic moment are deflected, due to the
magnetic field gradient, from a straight path. The screen
reveals discrete points of accumulation, rather than a
continuous distribution, owing to their quantized spin.
Historically, this experiment was decisive in convincing
physicists of the reality of angular-momentum
quantization in all atomic-scale systems.

2/31

Robert-Bosch-Breite 10 
37079 Göttingen

Tel.: 0551 604 - 0 
Fax: 0551 604 - 107

info@phywe.de
www.phywe.de



P2511101

Other information (1/2)

Prior 

knowledge

Scientific 

principle

A beam of potassium atoms generated in a hot furnace travels along a specific path in
a magnetic two-wire field. Because of the magnetic moment of the potassium atoms,
the non-homogeneity of the field applies a force at right angles to the direction of their
motion. The potassium atoms are thereby deflected from their path.

By measuring the density of the beam of particles in a plane of detection lying behind
the magnetic field, it is possible to draw conclusions as to the magnitude and direction
of the magnetic moment of the potassium atoms.

The prior knowledge required can be found in the theory section.

Other information (2/2)

Learning

objective

The goal of this experiment is to investigate the quantisation of the angular
momentum.

Tasks

1. Recording the distribution of the particle beam density in the detection plane in the
absence of the effective magnetic field.

2. Fitting a curve consisting of a straight line, a parabola, and another straight line, to
the experimentally determined special distribution of the particle beam density.

3. Determining the dependence of the particle beam density in the detection plane
with different values of the non-homogeneity of the effective magnetic field.

4. Investigating the positions of the maxima of the particle beam density as a function
of the non-homogeneity of the magnetic field.
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Theory (1/31)

Magnetic moment

Investigating the positions of the maxima of the particle beam density as a function of the non-
homogeneity of the magnetic field.

If one considers the component  of the spin in a given z-direction, the system has two different possible
orientations, characterized by the quantum numbers

The z-component of spin takes the eigen value
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Theory (2/31)

The associated magnetic moment in the z-direction take the value

with the Bohr magneton

and 

The literature value of the g-factor is
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Hence,     (3)

The object of the Stern-Gerlach experiment is to establish the directional quantization of the electron spin.
Furthermore, according to which quantity is taken as known, the value of  or  can be determined.

Let the direction of the magnetic field with field strength  and induction  entered by the potassium atoms
be taken as z-coordinate. The outer electrons of the potassium atom complete a classical precessional
movement about the field direction. The eigen values of the magnetic moment are therefore parallel or
antiparallel to the magnetic field:

     (4)
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Theory (3/31)

Action of forces

The forces acting on the potassium atom are attributable to their magnetic moment and arise when the field
is inhomogeneous:

The expression in parentheses is to be understood as a scalar product whose differential operators act on 
or . The force is therefore determined by the vector gradient of the magnetic field:
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To simplify this equation, we fall back upon the identity

in which the vector product of  and  vanishes since

Further, we can put
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Theory (5/31)

i.e., only the numerical values H of the magnetic field as a scalar are decisive:

For example, when using a cartesian system of coordinates (x, y, z), the component of the force acting on the
potassium atom in the z-direction equals

  or     (5)

Assuming that the potassium atoms enter the magnetic field at right angles to it and leave it again after a
path , and that  is constant, the potassium atoms describe a parabolic path and are deflected more
or less strongly in the z-direction according to their different velocities of entry, with corresponding changes
in direction. The position of the plane z = 0 in the magnetic field must still be determined accurately. 
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To produce an inhomogeneous magnetic field, one starts
with the shape of pole piece shown in Fig. 1.

So long as the magnetization does not proceed to
saturation, the pole pieces, of circular cylindrical form, lie
in two equipotential surfaces of a two-wire system using
currents in opposite directions. The magnetic field 
therefore consists of two components,  and  as
shown in Fig. 2:
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Theory (7/31)

Fig. 1: Two-wire field.

Each of the two conductors contributes to the field as
follows:

where 

is the excitation current for the magnetic fields. Hence, at
the point ,
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Theory (8/31)

Fig. 2: Determination of a system of
coordinates.
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Theory (9/31)

The value of the magnetic field strength is obtained by squaring this expression. Remembering in the
subsequent calculation that   and  lie in a plane at right angles to l, one finally obtains:

     (6)

The change in the value of H as a function of z can be calculated, using

and 

as     (7)
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The surfaces of constant field inhomogeneity are shown in
Fig. 3.

The equipotential surfaces in the neighbourhood of ,
are to be regarded as planes, to a good approximation.

We must now find the plane , in which the
equipotential surfaces are as plane as possible, and how
far this plane lies from the plane containing the wires,

z = z

1

z = z

1

z = z

0

Theory (10/31)

Fig. 3: Lines of constant field
inhomogeneity.
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Theory (11/31)

To do this, the length of the element of path  will be determined, subject to the condition that, in the
neighbourhood of  is independent of y.

If one develops  in a series of  and breaks this off after the first order, on the assumption that  is
small compared with  or , the field gradients are found to be

Dependence on y is to vanish at . We then get:
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Theory (12/31)

from which is follows that

The field inhomogeneity begins to decrease steeply with increasing y only at greater distances along the z-
axis. The present apparatus has a diaphragm system in which the length of the radiation window is about 4/3
a. As Fig. 4 shows, the value of  at  scarcely differs from its value at y = 0. The condition for
constant inhomogeneity is thus met to a large extent.

Now only H can be measured in the region of the z-axis, and not . Hence it is also useful to find that
plane for which

is a value not depending on y in the neighbourhood of y = 0.
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Theory (13/31)

This plane is to be z = 0, i. e., it helps to fix . Expansion as a series in  gives

Dependence on y should vanish at z = 0. We then get

from which it follows that

Hence     (8)
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The plane  lies therefore immediately adjacent to
the plane z = 0. Hence the inhomogeneity at z = 0 can be
regarded as being constant, to a good approximation.

The Stern-Gerlach apparatus is adjusted, in view of the
foregoing relationships, so that the radiation window lies
around 1.3 a from the notional wires of the two-wire
system (Figs. 4 and 5).

z = z

1

Theory (14/31)

Fig. 4: Behaviour of field inhomogeneity
along the radiation window.

10/31

Robert-Bosch-Breite 10 
37079 Göttingen

Tel.: 0551 604 - 0 
Fax: 0551 604 - 107

info@phywe.de
www.phywe.de



P2511101

The calibration H(i) of the electromagnet (magnetic field H
of magnetic induction B against the excitation current i ) is
likewise assumed for .(Fig. 6)

The constant  can therefore be calculated from

Field strengths are therefore converted to field gradients
using the equation
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Theory (15/31)

Fig. 5: Position of the atomic beam.

Particle track

The velocity ν of the potassium atoms entering the
magnetic field can be considered with sufficient accuracy
as being along the same direction (x-direction) before
entry into the field. The following transit in the x-direction
should be borne in mind (Fig. 7): a time

for passing through the magnetic field of length L and a
time 

for the distance l from the point of entry into the magnetic
field to the point of entry into the plane of the detector.

Δt =

L

v

t =

l

v

Theory (16/31)

Fig. 6 : Calibration of the electromagnet,
according to data sheet.
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Because of the effectively constant force in the z-direction,
the potassium atoms of mass M acquire, by virtue of the
inhomogeneity of the field, a momentum

It follows that the point of impact u of a potassium atom
of velocity v in the x-direction, at a given field
inhomogeneity, is

   (9)
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Theory (17/31)

Fig. 7: Particle track between magnetic
analyser and detection plane.

Theory (18/31)

is the path element covered by a potassium atom immediately after passing through the magnetic field in
the z-direction. Hence, there is the following fundamental relationship between the deflection u, the particle
velocity v and the field inhomogeneity :

where 

and 

It will be noticed that the faster particles are deflected less from their path than the slower ones.
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Theory (19/31)

Velocity distribution

In order to produce a beam of potassium atoms of higher average particle velocity, a furnace heated to a
defined temperature T is used. In the furnace, the evaporated potassium atoms are sufficiently numerous
to acquire a maxwellian velocity distribution, i.e., the number of atoms with a velocity between v and v + dv

in each elementary volume dV of the furnace is proportional to   

This proportionality applies also when one considers only the velocity directions lying within a solid angle dΩ
which is determined at x = 0 by tracks of width dz. The atoms which emerge from the opening in the
furnace, and which have entered the magnetic field between z and z + dz, with a velocity between v and v +
dv, obviously satisfy a velocity function involving the third power of v (Fig. 8):

    (10)
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Thus, only those potassium atoms traverse the strip dz in
time dt with velocity v at a later point in time
corresponding to the transit time, which come from
volume element dV existing in a region at depth vdt behind
the opening in the furnace. The volume of this region is
proportional to v and contributes likewise to the
distribution function. Indexing with m takes account of the
two possible magnetic moments of the potassium atom.
On symmetry grounds it can be assumed that both
directional orientations are equally probable.

Theory (20/31)

Fig. 8: Geometrical relationships for
deriving the distribution function
depending on v and z.
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Theory (21/31)

The function  represents the spatial profile of the numbers of particles, for particles of orientation m at
the position x = 0. It arises through limitation of the atomic beam by appropriate systems of diaphragms.
The function  differs from zero within a rectangular area of width D (beam enclosure).

Particle current density

The object of the following calculation is to calculate the particle current density I in the measuring plane x =
0, as a function of the position u, from the distribution which depends on v and z, since this density is
proportional to the signal at the detector. All potassium atoms entering the magnetic field at a height of z
are spread by an amount du at position u on account of their differences in velocity dv. For equal values of
z, therefore, the following conversion from v to u applies:
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Theory (22/31)

From equation (9) for the deflection of the path as a
function of v, one obtains by substitution and
differentiation:

In addition,  

If, to abbreviate, we now let
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Theory (23/31)

We now integrate with respect to z and sum over the possible orientations m, and so derive the desired
particle current density at position u:

By reason of the equivalence to the particle profile of the orientations m = –1/2 and m = +1/2,

and hence       (13)

For a vanishing magnetic field or a vanishing inhomogeneity,  and is independent of v. In this case, the
particle current density in the measuring plane is defined as .
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Theory (24/31)

Infinitesimal beam cross-section

The course of the particle current density  depends, among other factors, on how  is formed. As the
simplest approximation, one can start from a beam enclosure of any desired narrowness:

    (14)
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Theory (25/31)

We then get

and therefore    (15)

The particle current density   for narrow beam profiles is therefore proportional to the width 2 D
determined by the diaphragm system. The position  of the intensity maximum is found by differentiating
with regard to u:
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Theory (26/31)

From

   (16)

we obtain the determining equation for :

   (17)

The distances of the maxima from the x-axis (beam deflection) therefore increase in proportion to the field
inhomogeneity.
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Theory (27/31)

A better compatibility of the calculation with the experiment is achieved by regarding the beam enclosure
with width 2 D as being infinitely long, and by describing the beam profile as two steep straight lines with a
parabolic apex (Fig. 9).

     (18)
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Theory (28/31)

In this model,  is regarded as being twice
differentiable. The particle current density  based on
this supposition has values, dependent on the
inhomogeneity of the magnetic field and hence on q,
which have maxima at positions , which differ to a

greater or lesser extent from the positions 
resulting from the approximation assuming an
infinitesimally narrow beam enclosure.
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= ±q/3u

(0)

e

Fig. 9: Mathematical assumption of
particle current density with a
vanishingly-small magnetic field.
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Theory (29/31)

To determine the function   we start from the condition

    (19)

In calculating , the differentiation after u can be incorporated within the integral, as can be readily seen
in the behaviour of the integrand for :

The integrand is not changed if  is replaced by .

(q)u

e
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du
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e
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Theory (30/31)

The differentiation with regarded to  can now be shifted by partial integration:

The integrals occuring hare can be solved in stages. We get        (20)

with the solution function

    (21)
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Theory (31/31)

From this, there follows immediately the determining function sought, for the position of the particle current
maximum:

    (22)

From the central symmetry for  there results the mirror symmetry of the solution curve . It is
therefore sufficient to restrict the evaluation to positive .

F( ) = 0u

e

f( )u

e

(q)u

e

u

e
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Equipment
Position Material Item No. Quantity

1 Stern-Gerlach apparatus 09054-88 1
2 Matching transformer 09054-04 1
3 Electromagnet w/o pole shoes 06480-01 1
4 Pole piece, plane 06480-02 2
5 High vacuum pump assembly,compact 09059-99 1
6 Ultra-Low-Noise Current Ampflifier 13627-99 1
7 PHYWE power supply, variable DC: 12 V, 5 A / AC: 15 V, 5 A 13540-93 1
8 PHYWE Power supply, 230 V, DC: 0...12 V, 2 A / AC: 6 V, 12 V, 5 A 13506-93 2
9 Digital thermometer, -50...+1300°C, for type K and J sensor 07022-00 1

10 Commutator switch 06006-00 1
11 Adapter, BNC male/4 mm female pair 07542-26 1
12 Potassium ampoules, set of 6 09054-05 1
13 Isopropyl alcohol, extra pure, 1000 ml 30092-70 1
14 Steel cylinder,nitrogen,10l, full 41763-00 1
15 Reducing valve f.nitrogen 33483-00 1
16 Rubber tubing,vacuum,i.d.6mm 39286-00 3
17 Gas-cylinder Trolley for 10 L. 41790-10 1
18 Two-tier platform support 02076-03 1
19 Storage tray, 413 x 240 x 100 mm 47325-02 1
20 Cristallizing dish, boro3.3, d = 200 mm 46246-00 1
21 Connecting cord, 32 A, 250 mm, blue 07360-04 2
22 Connecting cord, 32 A, 250 mm, yellow 07360-02 2
23 Connecting cord, 32 A, 500 mm, red 07361-01 3
24 Connecting cord, 32 A, 500 mm, blue 07361-04 2
25 Connecting cord, 32 A, 500 mm, green-yellow 07361-15 1
26 Connecting cord, 32 A, 750 mm, red 07362-01 1
27 Connecting cord, 32 A, 750 mm, yellow 07362-02 3
28 PHYWE Demo Multimeter ADM 3: current, voltage, resistance, temperature 13840-00 4
29 Frame for complete experiments 45500-00 2
30 Shelf with hanging device 45505-00 2
31 Stange, genutet, L=285 mm 315843 2
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Setup and Procedure

Setup and Procedure (1/7)

1. Preparation of vacuum system: evacuation

Connection of the two-stage rotary pump (backing pump)
to the vacuum valve, using metallic hose. Connection of
the prevacuum pressure gauge to the pre-vacuum
measuring point (Fig. 10).

Before starting up the Stern-Gerlach apparatus for the first
time, or after a long period out of action, the pump stand
should first be evacuated (switch on vacuum pump, open
prevacuum and mainvacuum valves). When the pressure
has fallen to 100 mPa, close the valves (backing pump can
be switched off) and start using the iongetter-pump.

Fig. 10: Experimental setup
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Setup and Procedure (2/7)

Proceed in the following steps: start with an ion current range multiplier up to 200 mA, set the commutator
switch to “Start”, and operate the mains switch. When the ion current has fallen to below 10 mA, set the
commutator switch to “Protect”. A safety system is thereby connected, which will switch off the pump if gas
leaks in. When the ion current has fallen to less than 1.5 mA, switch off the pump (set the commutator
switch to “Start”, and disconnect from the mains).

2. Preparation of the vacuum installation: filling

Disconnect current supply to detector. Set the pressure-regulating valve of the nitrogen cylinder to as near
below 500 hPa as possible. Open the gas cylinder and fitting and then connect to the filling valve of the
pump stand. Open the main valve. Nitrogen flows in.

Setup and Procedure (3/7)

3. Assembly of the Stern-Gerlach apparatus

Uncover the blanc flange on the connecting piece to the Stern-Gerlach apparatus while the nitrogen is
flowing (only remove the clamping ring, do not lift the flange out). Allow the nitrogen to continue to flow in:
the blank flange will be easily lifted after a short time by the pressure of the nitrogen and nitrogen will leak
out by intermittent to-and-fro movements. Uncover the blank flange of the potassium furnace by removing
the red locking ring, but do not remove the flange. Remove the blank flange of the connecting piece from the
vacuum installation, but take care that the blank flange does not fall off/in to the furnace. Remove the
uncovering blank flange of the pump stand and immediately attach the Stern-Gerlach apparatus and secure
it by the locking ring. 
Now evacuate the apparatus. To do this, connect up the vacuum pump and then, after a short interval, shut
off the flow valve and open the pre-vacuum valve. Close the valves when the pressure has fallen to 100 mPa
(the backing pump can be disconnected). Restart the ion getter pump (the range multiplier for the ion
current first being 200 mA, the commutator switch set at “Start”, and the mains connected up). When the ion
current falls to 10 mA, set commutator switch to “Protect”.

22/31

Robert-Bosch-Breite 10 
37079 Göttingen

Tel.: 0551 604 - 0 
Fax: 0551 604 - 107

info@phywe.de
www.phywe.de



P2511101

Setup and Procedure (4/7)

4. Charging the atomic beam furnace

Uncover the blank flange of the furnace after removing in the red locking ring, but do not remove this flange.
Flush the apparatus with nitrogen as already described (see 2).

When the blank flange of the atomic beam furnace starts moving to-and-fro, the flange can be removed.
Insert the key for releasing the furnace-opening locking screw and turn the screw to remove it. Then replace
the blank flange.

Place a potassium ampoule with its tip upwards into the steel cylinder of the ampoule opener and cover it
with its associated steel disc. Strike the steel disc with a hammer, thus cutting off the top of the ampoule.
Caution when handling potassium! Contact with the skin causes burns. Wear protective goggles! After their
use, throw any parts with have been wetted by potassium into a vessel containing propanol-2.

Setup and Procedure (5/7)

While all protective measures are taken, the potassium injector must be turned as quickly as possible in the
opened ampoule as far as it will go in order to remove the potassium.

Withdraw the injector, strip off glass splinters with a spatula, remove the blank flange of the atomic beam
furnace, hold the injector inside the furnace, shake out the potassium, and ram the injector securely into the
bottom of the furnace. Re-insert the furnace locking screw and place the blank flange over it.

Caution! All parts wetted with potassium must be thrown into the vessel containing propanol-2. Do not take
them out again until the reaction is complete.
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Setup and Procedure (6/7)

5. Evacuation on the Stern-Gerlach apparatus

After pumping out the equipment with the backing pump, with the atomic beam furnace heater switched on
(supply voltage 4 to 5 V AC in accordance with the data sheet in the operating instructions), evacuate the
furnace until the ion current falls to below 0.5 mA. This operation may possibly take several hours! It is
advisable to connect up the detector current supply at this point (supply voltage as in data sheet).

If need be, after the charging is complete, re-tighten the red locking ring of the blank flange of the atomic
beam furnace.

6. Preparation of the magnet electric circuit

Pull apart the pole pieces of the magnet with tightening screws, position the magnet on its associated base
support so that the gap between the pole pieces faces the detector, and push it towards the magnetic
analyser. Adjust the magnet so that the front of the pole pieces lies parallel to the outer face of the Stern-
Gerlach pole pieces. Secure the pole pieces against these faces.

Setup and Procedure (7/7)

The electrical circuit is shown in Fig.11. To carry out a
measurement demagnetize the electromagnet. This is done
by reducing the excitation current in steps by small
amounts, reversing the polarity at each step using the
commutating switch.

7. Carrying out the experiment

When carrying out an experiment, make sure that the
voltages applied to the atomic beam furnace and the
matching transformer correspond to those given in the data
sheet. Check the heating voltage. When making a series of
measurements by changing the position of the detector
always turn the micrometer screw in one direction only. The
geometrical data of the apparatus required for evaluation
are likewise specified in the data sheet.

Fig. 11: Electrical circuit.
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Evaluation

Results (1/13)

Measurement of particle current density with vanishing
small magnetic field

Fig. 12 shows the particle current density taken up by the
detector (ionization current  in pA) as a function of the
point of measurement u, in the absence of a magnetic field.
It is not necessary in this case to determine the zero for u.
When the course of the curve is fitted by the straight lines
and the parabolic segment, one obtains the following
characteristic values:

p = 0.20 scale div. = 0.36 mm, D = 0.48 scale div. = 0.86 mm.

The value for 2 D corresponds to the width of the beam
enclosure to be set under the condition of a parallel atomic
beam.

I

i

Fig. 12: Ionisation current as a function of the
point of measurement u with a vanishingly-
small magnetic field.
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Results (2/13)

Calculation of the position of the intensity maximum

When these dimensions are used, the function F (u) in
equation (21) gives a curve strongly influenced by q (Fig.
13):

The points of intersection   with the u-axis give the
relation between  and q to be expected from the
calculation (Fig. 14).

u

e

u

e

Fig. 13: Solution function F(u) for various
parameters q. The numbers 0.49 to 5.96
correspond to q in mm.

Results (3/13)

Calculation of the asymptotic behaviour with large
fields

For a sufficiently large field inhomogeneity,  approaches
the solution given by a progressively smaller (infinitesimal)
beam enclosure. The following calculation provides the
more accurate course of the function  for larger
fields. Since it is assumed here that

   (23)

a Taylor series for F(u) can be developed. To do this, we
require the function

u

e

(q)u

e

, , , ≪ 1

u

e

p

u

e

D

q

p

q

D

f(u) = u ⋅ e

−

q

u

Fig. 14: Position ue of the zero point of
the solution function F(u) as a function
of the parameter q.
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Results (4/13)

and its derivatives as follows:

Up to the sixth derivative of f(u) only the coefficients of the third and fifth derivatives do not cancel each
other out in F(u).

The Taylor series is broken off above the sixth derivative.

    (24)
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Results (5/13)

The determining equation for 

is thus obtained.

The summand on the left gives the known solution  if the summand on the right is disregarded.

When this is not done, it is permissible to replace  by  in the summand on the right, because the
associated difference is of a still higher order.
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Results (6/13)

The quantity in parentheses on the right becomes unity:

This equation leads to

   (25)

or    (26)

as an appromaximation for sufficiently larger inhomogeneous fields.
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Results (7/13)

Measurements of particle current density

The graphs in Figs. 15 and 16 show the particle current densities (measured
as ionization currents ) in a series of measurements of different excitation
currents i of the field magnet.

The asymmetry in height of the intensity maxima is connected with the fact
that the inhomogeneity of the magnetic field is slightly different to the left
and the right of the beam enclosure.

The field inhomogeneities at the different excitation currents, according to
the calibration curves of the magnet, are given in the following Table:
(current i in A;  in T/m):

I

i

−∂B/∂z

I

0 0
0.095 25.6
0.200 58.4
0.302 92.9
0.405 132.2
0.498 164.2
0.600 196.3
0.700 226.0
0.800 253.7
0.902 277.2
1.010 298.6

∂B/∂z

Table
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Results (8/13)

Fig. 15:
Ionisation
current as a
function of
position (u) of
detector with
small
excitation
currents in the
magnetic
analyser. Fig. 16: Ionisation current as a function of

position (u) of detector with large excitation
currents in the magnetic analyser.

Results (9/13)

The positions of the intensity maxima shown in Figs. 15 and
16 are shown in Fig. 17 as a function of the inhomogeneity 

Evaluation in the asymptotic limiting case

The graph in Fig. 18 shows  as a function of the
expression

where     (27)

(cf. Equation 25).

∂B/∂z

∂B/∂z

q = 3 −u

e

C

u

e

c = = 0.781mm

−D

4

1

5

p

4

−D

2

1

3

p

2

Fig. 17: Experimentally determined
relationship between the position  of the
particle current density maximum and the
magnetic field inhomogeneity.

u

e
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Results (10/13)

From the regression line through the measured values
shown in Fig. 18 above the horizontal broken line (within
the framework of the permitted approximation in the
asymptotic limiting case), together with the exponential
equation

we derive the exponent B = 1.00

with the standard error S.D.(B) = 0.01.

The slope of the straight line in Fig. 18 is   

= A

∂B

∂z

(3 − )u

e

C

u

e

B

A = 44.8

T/m

 mm

Fig. 18: Field inhomogeneity as a function
of . Determination of slope from
asymptotic behaviour.
u

e

Results (11/13)

Determination of the Bohr magneton

Using the values l = 0.455 m, L = 7 cm, a = 2.5 mm,

The measured value T = 453 K,

and the slope of the straight line in Fig. 18, we calculate for the Bohr magneton, in accordance with
equations (11), (25) and (27), the value

The departure of about 2.5% from the value in the literature is mainly attributable to the inaccuracy of
calibration of the magnetic field.

= ⋅ = = 9.51 ⋅ Amμ

B

2kT

IL(1− )
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2

L
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e
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u
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L

I
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Results (12/13)

Position of intensity maxima as a function of field
inhomogeneity

From the asymptotic behaviour of  at large values of
field inhomogeneity  the experiment gives, for the
variable q:

u

e

∂B/∂z

= = 0.0223 ⋅

q

−∂B/∂z

1

A

10

−3

m

2

T

−1

Fig. 19: Measured values for the position 
 of the particle beam current maxima

as a function of the variable q, in
comparison with theory, represented by
the continuous curve.

u

e

Results (13/13)

If the positions  of the intensity maxima as a function of q are shown complete in accordance with Figs. 15
and 16, the measured points result as in Fig. 19. The theoretically determined relationship is indicated by a
continuous line. It is to be noticed that the course of particle current density at low fields, for both spin
directions, is only so little deformed relative to the central axis that on superposition the maximum remains
on the central axis.

As the inhomogeneities become greater the two maxima appear (suddenly) to the right and left of the
central axis. If the inhomogeneities become even greater, the splitting changes in proportion to the
inhomogeneity.

u

e
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