Coulomb potential and Coulomb field of metal spheres

Coulomb potential and Coulomb field of metal spheres as a function of position and voltage

General information

Application

measurement of electric field

Electric fields are the cause of many phenomena, especially in particle physics.

The Coulomb potential and the electric field can be studied on a charged sphere. Outside the sphere, these radial fields behave analogously to the fields of point charges.

In this experiment, the fields are investigated as a function of the voltage applied to the sphere and the distance.

The electric field strength is determined using the principle of the mirror charge.

Other information (1/2) PHYWE excellence in science **Prior** The basic principle of electric charges should be known. To describe the charged sphere its capacity must be known. Furthermore, the basic principle of fields and **knowledge** potential should already be known. Since the fields depend on the charge, but voltages are applied to the sphere, the **Scientific** sphere is regarded as a capacitor in order to be able to investigate the Coulomb **principle** potential and the electric field as a function of voltage and distance.

Theory (1/4)

The potential outside the charged spherical shell corresponds to that of a point charge with:

$$
\varphi = \frac{1}{4\pi\epsilon_0} \frac{Q}{r} \tag{1}
$$

Where r is the distance to the center of the sphere and Q is the charge of the sphere.

Using the capacity C of the sphere with the radius R , the charge at voltage U is

$$
Q = C \cdot U = 4\pi\epsilon_0 \cdot R \cdot U \tag{2}
$$

By introducing (2) into (1) yields

$$
\varphi = \frac{R}{r} \cdot U \tag{3}
$$

PHY WE excellence in science

 (4)

PHYWE excellence in science

PHY WE excellence in science

Theory (2/4)

To investigate the potential as a function of the distance, a double logarithmic representation of the measured values is suitable.

The logarithm of equation (3) leads to

$$
\log \varphi = -\log r + \log R + \log U = -\log r + k \tag{4}
$$

with a constant k at constant \overline{R} and $\overline{U}.$

Using (4) the measured values for the location-dependent measurements can be examined. With double logarithmic representation a straight line with the slope $m = -1$ results.

Theory (3/4)

To measure the field strength a capacitor plate is mounted on the electric field meter.

A virtual mirror charge is induced by this plate as shown in the figure to the right.

PHYWE excellence in science

Theory (4/4)

If the potential field φ is known, the electric field E can be described as the negative gradient of the potential.

$$
E = -\text{grad}\varphi = -\frac{d\varphi}{dr} = \frac{1}{4\pi\epsilon_0} \frac{Q}{r^2}
$$
 (5)

Replacing the value of Q in (5) by (2) and considering the doubling of the charge, results in:

$$
E = \frac{2R}{r^2} \cdot U \tag{6}
$$

For the evaluation in double logarithmic representation, the electric field is calculated similar to (4):

$$
\log E = -2 \cdot \log r + \log R + \log U = -2 \cdot \log r + k \tag{7}
$$

resulting in a straight line with the slope $m = -2$.

www.phywe.de

Equipment

Setup and procedure

Setup (1/2)

- Mount the conducting sphere on the insulated stand and connect it with the high voltage cable via the $10M\Omega$ safety resistor to the positive pole of the high voltage source.
- Connect the negative pole of the high voltage source and the backside of the electric field meter to ground.
- Place the protective cap on the electric field meter and connect it via USB to a computer.
- Start the program EFMXX5_ReadOut. Click on "Device info" and "Continue". Start zero adjustment and follow the instructions.
- Remove the cap and mount the voltage measuring attachment (golden cap) on the electric field meter.
- \circ Plug the potential measuring probe to the red connection socket of the voltage measuring attachment.
- Connect the glass tube of the potential measuring probe with the rubber tubing to the burner.

PHYWE excellence in science

Setup (2/2)

- "Start measurement display" and choose "Measure mode" "Voltmeter MK 11".
- With the voltage measuring attachment the electric field meter is capable of measuring voltages in the ranges of 50 V, 250 V, 500 V and $2500V$.
- Press "Start" for data aquisition.
- Adjust measurement range as needed.

Procedure (1/5)

Measurement 1: Electrostatic potential of a charged sphere as a function of voltage

Place the measuring probe tip about 25 cm from the center of the sphere. Light up the flame and adjust the gasflow of the burner, so that the flame is very stable and fully enwraps the probe's tip (~ 5mm above the tip).

- Apply voltages in steps of $0.5 kV$ beginning from $1 kV$ up to a maximum of $4kV$ to the sphere with diameter $2R = 12$ cm
- Note your measurements in table 1 of the evaluation section.

PHYWE excellence in science

Procedure (2/5)

Measurement 2: electrostatic potential of a charged sphere as a function of distance

- Apply a voltage of $1 kV$ to the sphere with diameter $2R = 12$ cm.
- Take measurements for steps of $1\,cm$ up to . 10 cm
- Note your measurements in table 2 of the evaluation section.
- \circ Repeat the measurement for the conducting sphere of $2R = 4$ cm.

Procedure (3/5)

Setup for the measurement of the electric field:

- \circ Replace the voltage measuring attachment at the electric field meter with the capacitor plate.
- \circ Adjust the height of the electric field meter with attached capacitor plate in the holder, so that its central axis lies in the equator plane of the test sphere.
- Change "Measure mode" to "E-Fieldmeter"
- Press "Start" for data aquisition.
- Adjust measurement range as needed.

Procedure (4/5)

Measurement 3: Electric field strength of a charged sphere as a function of the charging voltage

- Place the sphere with diameter $2R = 12$ cm successively at distances of $r_1 = 25$ cm, $r_2 = 50$ cm and $r_3=75\,cm.$
- Charge the sphere in steps of $1 kV$ up to $10 kV$ by applying the voltage to the small sphere on the insulating support and touching the test sphere with it. (Note: Do not directly charge the test sphere. Due to insulation issue this will lead to false experimental results)
- After charging set the voltage back to zero, switch off the voltage supply and touch the small sphere with the earthed cable. Note the resulting values in table 3 and discharge the sphere after every measurement by briefly touching it with the earthed cable.
- Repeat the measurement with the $2R = 4$ cm sphere at $r_4 = 25$ cm

Procedure (5/5)

Measurement 4: Electric field strength of a charged sphere as a function of distance

Charge the sphere with diameter $2R = 12$ cm to 10 kV via the small sphere as before. After charging set the voltage back to zero, switch off the power supply and touch the small sphere with the earthed cable.

- Measure the electric field in steps of $5 cm$ beginning at $r = 15$ cm up to $r = 60$ cm.
- \circ Note the resulting values in table 4 and discharge the sphere at the end by briefly touching it with the earthed cable.

 \mathbf{Z}

PHYWE excellence in science

Since $E=\frac{2R}{r^2}\cdot U$ the slope m of the linear regression $E=m\cdot U$ should match with the quotient $2R/r^2.$

Evaluation (4/4) Table 4

Note the results of your measurement of the electric field strength E as a function of distance r for the $R = 6cm$ sphere at voltage $V = 10kV$.

Plot the resulting graph with double logaritmic scale to check the slope.

You can also simply plot the resulting electric field strengths with respect to the squared reciprocal distance $1/r^2 [1/m^2]$ (note that the distances were measured in cm). Since $E = 2R \cdot U \cdot \frac{1}{r^2}$ the slope m of the linear regression $E = m \cdot \frac{1}{n^2}$ should then match with $2R \cdot U$. r^2 $\frac{1}{r^2}$ should then match with $2R\cdot U$

