

Stromtransformation (DEMO)

Physik	Elektrizität & Magne	ektrizität & Magnetismus Elektromagnetismus & Induktion		
Physik	Elektrizität & Magne	etismus Nutzung elek	Nutzung elektrischer Energie / Energieversorgung	
F Schwierigkeitsgrad	QQ Gruppengröße	U Vorbereitungszeit	Durchführungszeit	
mittel	1	10 Minuten	20 Minuten	

Tel.: 0551 604 - 0

Fax: 0551 604 - 107

Lehrerinformationen

Anwendung

Versuchsaufbau

Transformatoren werden benötigt um Eingangsströme größer, kleiner oder gleich zu transformieren. Stromtransformatoren sind in vielen elektrischen Geräten meist im Netzteil eingebaut. In diesem Versuch wird die Abhängigkeit von Windungszahl und Stromstärke untersucht.

Wird ein Transformator auf der Sekundärseite stark belastet, so hängt die Stromstärke im Sekundärkreis von der Primärstromstärke und den Windungszahlen der Spulen ab.

Zur Untersuchung der Gesetzmäßigkeit werden verschiedene Transformatoren untersucht, wobei zunächst Windungszahl und Stromstärke auf der Primärseite und dann auf der Sokundärseite konstant gehalten werden.

Sonstige Lehrerinformationen (1/2)

Vorwissen

Prinzip

Es wird kein Vorwissen benötigt.

Wenn Wechselstrom durch eine Spule fließt erzeugt dieser ein variierendes Magnetfeld, welches wiederum einen Strom in eine weitere Spule induzieren kann.

Im Gegensatz zu den Spannungen sind die Ströme bei einem Transformator zu den Windungen entgegengesetzt proportional. Darüber hinaus gilt, wenn der Primärstrom linksherum durch die Spule fließt, fließt der Strom in der Sekundärspule genau andersherum. Durch die Anwendung des Durchflungssatzes gilt:

$$I_1 \cdot n_1 = I_2 \cdot n_2$$

Sonstige Lehrerinformationen (2/2)

Lernziel

Die Schüler sollten verstehen wie Wechselströme in niedrigere und höhere umgewandelt werden können.

Aufgaben

Untersuche den Zusammenhang zwischen den Windungszahlen und den Strömen.

Schülerinformationen

Motivation

excellence in science

Transformatoren sind in vielen elektrischen Geräten eingebaut. Um gut Strom transformieren zu können dürfen die Spulen nicht zuweit auseinander sein und ein Eisenkern ist wichtig.

Dieser Versuch untersucht den Zusammenhang zwischen Stromstärke und Windungszahl.

Umspannwerk

Material

Position	Material	ArtNr.	Menge
1	PHYWE Stelltrafo mit Digitalanzeige, RiSU 2019 DC: 020 V, 12 A / AC: 025 V, 12 A	13542-93	1
2	PHYWE Demo-Multimeter ADM 3: Strom, Spannung, Widerstand, Temperatur	13840-00	2
3	Eisenkern, U-förmig, geblättert	06501-00	1
4	Eisenkern, I-förmig, geblättert	06500-00	1
5	Stifte für Eisenkern, U-förmig	06502-00	1
6	Spannvorrichtung für Eisenkerne	06506-00	1
7	Spule, 300 Windungen	06513-01	2
8	Spule, 600 Windungen	06514-01	1
9	Spule, 1200 Windungen	06515-01	1
10	Verbindungsleitung, 32 A, 750 mm, schwarz Experimentierkabel, 4 mm Stecker	07362-05	3
11	Verbindungsleitung, 32 A, 750 mm, blau Experimentierkabel, 4 mm Stecker	07362-04	2

Tel.: 0551 604 - 0

Fax: 0551 604 - 107

Aufbau

PHYWE excellence in science

Baue den Versuch nach Abb. 1 auf.

- Setze auf den U-Kern zwei Spulen mit 300 Windungen.
- Stecke die Eisenstifte in die Schenkel des U-Kerns und lege das Joch auf.
- Drücke den Transformator mit Hilfe der Spannvorrichtung fest zusammen.
- Schließe die Primärspule über ein Messgerät an den Wechselspannungsausgang des Stelltrafos an. Wähle den Messbereich 1 A~.
- Schließe die Sekundärspule an das zweite Messgerät an.
 Wähle den Messbereich 1 A~.

Abb. 1

Durchführung (1/2)

Versuch 1

- \circ Stelle die Spannung am Stelltrafo so ein, dass die Primärstromstärke $I_1=1A$ beträgt.
- \circ Lese die Sekundärstromstärke I_2 ab und trage sie in Tabelle 1 in der Auswertung ein.
- Verändere den Transformator, setze die Sekundärspule mit 600 Windungen ein und wiederhole die Messung. Wähle dabei einen geeigneten Messbereich.
- Wähle die Sekundärspule mit 1200 Windungen und wiederhole Messung.

Tel.: 0551 604 - 0 Fax: 0551 604 - 107

Durchführung (2/2)

Versuch 2

- Baue den Transformator mit Primärspule und Sekundärspule von je 300 Windungen auf.
- $\circ~$ Stelle die Spannung am Stelltrafo so ein, dass die Sekundärstromstärke $I_2=500mA$ beträgt.
- \circ Lese die Primärstromstärke I_1 ab und trage sie in Tabelle 2 ein.
- Verändere den Transformator, setze die Primärspule mit 600 Windungen ein und wiederhole die Messung. Wähle dabe einen geeigneten Messbereich.
- o Wähle die Primärspule mit 1200 Windungen und wiederhole die Messung.

Protokoll

Aufgabe (1/5)

Tabelle 1: $n_1 = 300; I_1 = 1 \,\mathrm{A}$

 n_2

 I_2 [mA]

 n_1/n_2

 I_1/I_2

300

600

1200

Aufgabe (2/5)

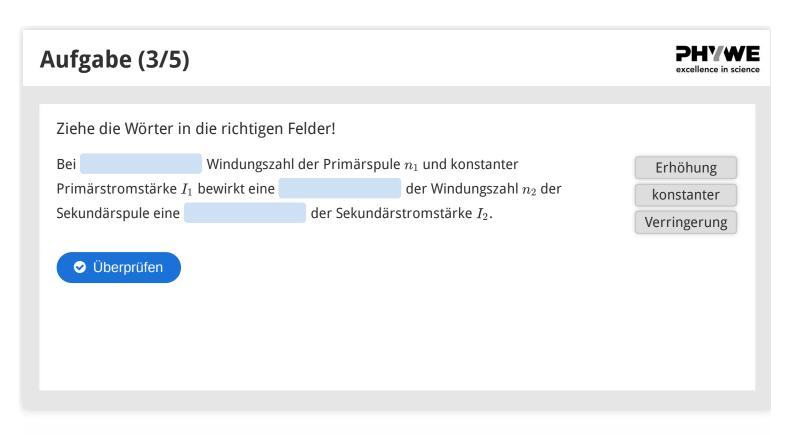
excellence in science

Tabelle 2: $n_2 = 300; \ I_2 = 500 \, \mathrm{mA}$

 n_1

 I_1 [mA]

 n_1/n_2


 I_1/I_2

300

600

1200

Aufgabe (4/5) excellence in science Ziehe die Wörter in die richtigen Felder! Tabelle 1 zeigt, dass die etwa halbiert wird, wenn sich Primärspule die Windungszahl verdoppelt. Bei konstanter Windungszahl der Sekundärspule n_2 ist bei höherer Windungszahl der Sekundärstromstärke n_1 eine geringere I_1 Primärstromstärke erforderlich, um eine gewünschte konstante I_2 zu Stromstärke erreichen. Überprüfen

Aufgabe (5/5)

Ziehe die Wörter in die richtigen Felder!

Tabelle 2 zeigt, dass bei doppelter

 n_1 die

 ${\it I}_1$ nur etwa halb so groß sein muss, um die

konstant zu halten.

Sekundärstromstärke Primärstromstärke

Windungszahl

Stromstärken

Zwischen den Stromstärken und den Windungszahlen besteht an einem sekundärseitig stark belasteten Transformator folgender Zusammenhang:

Die in Primär- und Sekundärkreis verhalten sich

zueinander umgekehrt wie die Windungszahlen.

Folie	Punktzahl/Summe
Folie 14: Zusammenfassung zum Transformator	0/3
Folie 15: Konstante Primärstromstärke	0/5
Folie 16: Konstante Sekundärstromstärke	0/4

Gesamtpunktzahl 0/12

Lösungen anzeigen

C Wiederholen

Text exportieren

Robert-Bosch-Breite 10 Tel.: 0551 604 - 0 37079 Göttingen Fax: 0551 604 - 107