

Der Nebenschluss-Motor (DEMO)

Physik	Elektrizität & Magn	etismus Elektroma	Elektromagnetismus & Induktion		
Physik	Elektrizität & Magn	etismus Elektromo	Elektromotor & Generator		
F Schwierigkeitsgrad	QQ Gruppengröße	Vorbereitungszeit	Durchführungszeit		
mittel	1	10 Minuten	20 Minuten		

Lehrerinformationen

Anwendung

Versuchsaufbau

Elektromotoren werden in vielen Maschienen eingebaut. Sei es das E-Auto oder die elektrische Zahnbürste. Ein Elektromotor kann neben einem Permanentmagneten auch mit einem Elektromagneten betrieben werden. Werden Ankerspulen und Feldspulen parallel geschaltet, dann handelt es sich um einen Nebenschlussmotor.

Die Eigenschaften dieses Motors werden untersucht, indem der Drehsinn beobachtet und die Stromstärke gemessen. In diesem Versuch wird das Prinzip des Nebenschlussmotors verdeutlicht.

Sonstige Lehrerinformationen (1/2)

Vorwissen

Es wird kein Vorwissen benötigt.

Prinzip

Durch die Anziehung und Abstoßung von Magnetfeldern entsteht eine Drehbewegung beim Motor. Das äußere Magnetfeld ist von den parallel geschalteten Spulen erzeugt. Der T-Anker bildet auch ein Magnetfeld, welches mithilfe eines Kommutators zur richtigen Zeit umgepolt wird.

Sonstige Lehrerinformationen (2/2)

Lernziel

Die Schüler sollten verstehen, wie ein Nebenschlussmotor funktioniert.

Aufgaben

Untersuche, wie ein Nebenschlussmotor funktioniert und wie die Motordrehzahl beeinflusst werden kann.

Tel.: 0551 604 - 0 Robert-Bosch-Breite 10 37079 Göttingen Fax: 0551 604 - 107 info@phywe.de

www.phywe.de

Schülerinformationen

Motivation

PH/WE excellence in science

Elektromotoren werden in vielen Maschienen eingebaut. Sei es das E-Auto oder die elektrische Zahnbürste. Ein Elektromotor kann neben einem Permanentmagneten auch mit einem Elektromagneten betrieben werden. Werden Ankerspulen und Feldspulen parallel geschaltet, dann handelt es sich um einen Nebenschlussmotor.

Die Eigenschaften dieses Motors werden untersucht, indem der Drehsinn beobachtet und die Stromstärke gemessen wird. In diesem Versuch wird das Prinzip des Nebenschlussmotors verdeutlicht.

Ein Elektroauto

Material

Position	Material	ArtNr.	Menge
1	PHYWE Netzgerät, universal, RiSU 2019 DC: 018 V, 05 A / AC: 2/4/6/8/10/12/15 V, 5 A	13504-93	1
2	PHYWE Demo-Multimeter ADM 3: Strom, Spannung, Widerstand, Temperatur	13840-00	1
3	Tischklemme	02012-00	1
4	Plattenhalter, Öffnungsweite 2 - 35 mm	06509-00	1
5	Eisenkern, U-förmig, geblättert	06501-00	1
6	Spule, 1200 Windungen	06515-01	2
7	Motoraufsatz	06550-00	1
8	Rotorspule, Doppel-T-Anker	06554-00	1
9	Schnurscheibe	06558-01	1
10	Verbindungsleitung, 32 A, 750 mm, rot Experimentierkabel, 4 mm Stecker	07362-01	3
11	Verbindungsleitung, 32 A. 750 mm. blau Experimentierkabel, 4 mm Stecker	07362-04	3

Tel.: 0551 604 - 0

Fax: 0551 604 - 107

Aufbau (1/2)

- Setze den Motoraufsatz nach Abb. 1 zusammen.
- Schiebe die Achse [1] des Doppel-T-Ankers in die Lagerbohrung [3] des Motoraufsatzes und schraube sie mit der Schnurscheibe [2] fest.
- Lege die Schleifbürsten [4] des Motoraufsatzes an den unterbrochenen Kupferring [7] an. Ziehe die Rändelschrauben [5] etwas nach oben ziehen und drehe sie fest, sodass die Feder der Hebelarme gespannt wird. Dadurch werden die Schleifbürsten fest auf den Kupferring gedrückt. Der elektrische Kontakt zwischen Ankerspulen und Anschlussbuchsen [6] ist hergestellt.

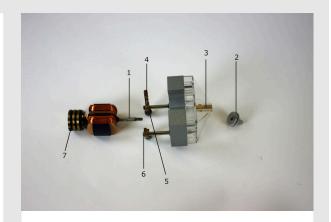


Abb. 1

Aufbau (2/2)

- Vervollständige den Aufbau nach Abb. 2 und Abb. 3.
- Spanne den Eisenkern mit Halter in die Tischklemme ein.
- Setze Spulen und Motoraufsatz auf den Eisenkern.
- Stelle Gleichspannung am Netzgerät auf 0 V- ein.
- Schalte die beiden Feldspulen in Reihe.
- Schalte Ankerspule und Messgerät in Reihe.
- Schalte Feldspulen und Ankerspule (mit Messgerät in Reihe) parallel.

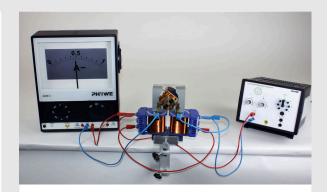


Abb. 2

Durchführung

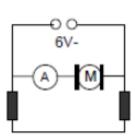


Abb. 3

- Stelle die Spannung auf ca. 6 V- ein, eventuell musst du den Motor durch Drehen "anwerfen".
- Verändere die Spannung. Beobachte Drehzahl und Messgerät.
- Stelle die Spannung auf 0 V-. Pole die Betriebsspannung am Netzgerät um. Erhöhe die Spannung und beobachte die Drehrichtung.
- Stelle die Spannung auf 0 V-. Pole die Spannung an den Anschlüssen der Ankerspule um. Erhöhe die Spannung und beobachte die Drehrichtung.
- Belaste den Motor durch Fingerdruck auf die Schnurscheibe. Beobachte Drehzahl und Messgerät.

Protokoll

Aufgabe (1/6)

Wie ändert sich die Drehzahl des Motors und die Stromstärke bei steigender Spannung?

Die Drehzahl ändert sich wenig, die Stromstärke steigt.

Die Drehzahl steigt, die Stromstärke ändert sich wenig.

Die Drehzahl und die Stromstärke ändern sich wenig.

Die Drehzahl und die Stromstärke steigen.

Aufgabe (2/6)

Durch Umpolen der Betriebsspannung...

... bleibt die Drehrichtung konstant.

... stoppt der Motor.

... ändert sich die Drehrichtung.

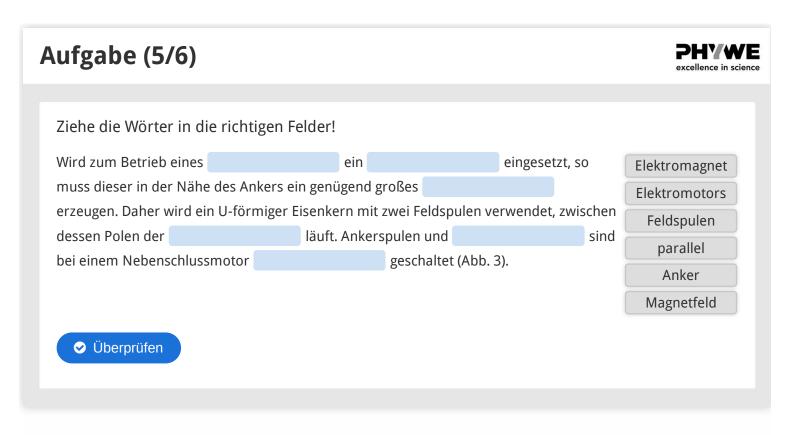
Robert-Bosch-Breite 10 Tel.: 0551 604 - 0 37079 Göttingen Fax: 0551 604 - 107

Aufgabe (3/6)

Ändert sich die Stromrichtung nur in der Ankerspule,...

- ... bleibt die Drehrichtung konstant.
- ... hört der Motor auf sich zu drehen.
- ... ändert sich die Drehrichtung.

Aufgabe (4/6)


Bei erhöhter Belastung...

- ... steigt die Drehzahl des Motors und die Stromstärke erhöht sich.
- ... nimmt die Drehzahl des Motors ab und die Stromstärke erhöht sich.
- ... nimmt die Drehzahl des Motors ab und die Stromstärke nimmt ab.
- ... steigt die Drehzahl des Motors und die Stromstärke nimmt ab.

Robert-Bosch-Breite 10 Tel.: 0551 604 - 0 37079 Göttingen Fax: 0551 604 - 107

Aufgabe (6/6) excellence in science Ziehe die Wörter in die richtigen Felder! Beim Umpolen der werden sowohl das Feld der Ankerspule Drehsinn als auch das der umgepolt, sodass der Stromrichtung erhalten bleibt. Ändert sich dagegen nur die Richtung der Ankerspule, dann ändert nur dieses Magnetfeld seine Betriebsspannung und damit auch der Drehsinn. Feldspulen Überprüfen

Robert-Bosch-Breite 10

37079 Göttingen

Folie	Punktzahl/Summe
Folie 12: Drehzahl des Motors	0/1
Folie 13: Umpolen der Betriebsspannung	0/1
Folie 14: Stromrichtung der Ankerspule	0/1
Folie 15: Verhalten bei Belastung	0/1
Folie 16: Nebenschlussmotor	0/6
Folie 17: Verhalten bei Umpolung	0/5
Gesamtpunktzahl	0/15
Lösungen anzeigenWiederholen	