

Der Nebenschlussmotor (Artikelnr.: P1398700)

Curriculare Themenzuordnung

Schwierigkeitsgrad

Vorbereitungszeit

Durchführungszeit

empfohlene Gruppengröße

-

99999

00000

22222

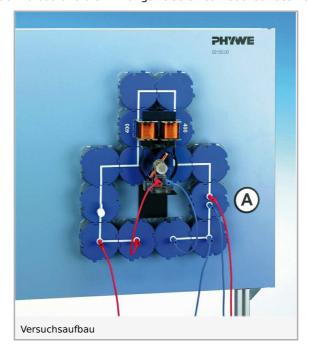
Mittel

10 Minuten

20 Minuten

2 Schüler/Studenten

Zusätzlich wird benötigt:

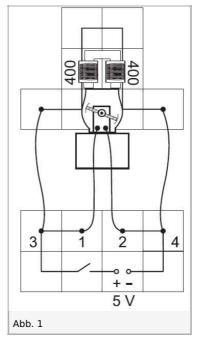

Versuchsvarianten:

Schlagwörter:

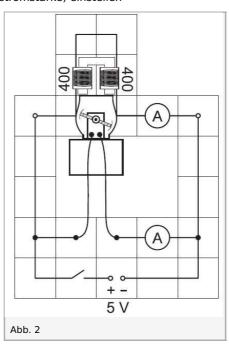
Prinzip und Material

Prinzip

Anhand eines Motor-Modells sollen der Aufbau und die Wirkungsweise eines Nebenschlussmotors demonstriert werden.


Material

Position	Material	Bestellnr.	Menge
1	Demo Physik Hafttafel mit Gestell	02150-00	1
2	Elektrische Symbole für Demo-Tafel, 12 Stück	02154-03	1
3	Analog-Demomultimeter ADM 2	13820-01	2
4	PHYWE Netzgerät, universalDC: 18 V, 5 A / AC: 15 V, 5 A	13500-93	1
5	Leitungs-Baustein, unterbrochen, DB	09401-04	3
6	Leitungs-Baustein, Anschlussbaustein, DB	09401-10	4
7	Leitungs-Baustein, gerade, DB	09401-01	5
8	Leitungs-Baustein, winklig, DB	09401-02	6
9	Leitungs-Baustein, T-förmig, DB	09401-03	2
10	Leitungs-Baustein, winklig mit Buchse, DB	09401-12	2
11	Motormodell für Demo-Tafel	07850-20	1
12	Wandhalter für Demo-Elektromotor	07849-00	1
13	Spule 400 Windungen, DB	09472-01	2
14	Ausschalter, DB	09402-01	1
15	U-Kern	07832-00	1
16	Verbindungsleitung, 32 A, 1000 mm, rot	07363-01	1
17	Verbindungsleitung, 32 A, 1000 mm, blau	07363-04	1
18	Verbindungsleitung, 32 A, 750 mm, rot	07362-01	2
19	Verbindungsleitung, 32 A, 750 mm, blau	07362-04	2
20	Verbindungsleitung, 32 A, 500 mm, rot	07361-01	2
21	Verbindungsleitung, 32 A, 500 mm, blau	07361-04	2



Aufbau und Durchführung

Versuch entsprechend Abb. 1 mit geöffnetem Schalter aufbauen; Motormodell auf den Halter aufsetzen, festschrauben und unterhalb der Spulen mit dem U-Kern platzieren

- Spannung 5 V- anlegen und Anker des Motors schräg stellen
- Schalter schließen, Anker ggf. leicht anstoßen und Drehsinn des Ankers beobachten
- Bei geöffnetem Schalter Betriebsspannung umpolen, Schalter schließen und Anker beobachten (1)
- Spannung auf ca. 7 V- erhöhen und danach auf ca. 3 V- herabsetzen; Drehzahl des Ankers beobachten (2)
- Bei geöffnetem Schalter Anker durch Vertauschen der Kontakte 1 und 2 umpolen, ursprüngliche Spannung einstellen, Schalter schließen, Drehsinn des Ankers beobachten und mit dem vorherigen vergleichen (3)
- Bei geöffnetem Schalter Umpolung des Ankers rückgängig machen und nun die Feldspulen durch Vertauschen der Kontakte 3 und 4 umpolen; wieder Drehsinn des Ankers beobachten und vergleichen (4)
- Bei geöffnetem Schalter Wechselspannung 8 V~ einstellen, Schalter schließen und Motor beobachten (5)
- Versuchsaufbau entsprechend Abb. 2 verändern; für die Strommesser die Messbereiche 300 mA- (für die Ankerstromstärke) und 1 A- (für die Feldstromstärke) einstellen

Schalter schließen und Motor belasten: Anker durch Fingerdruck auf die vordere Riemenscheibe abbremsen; dabei Drehzahl und Anzeige der Strommesser beobachten (6)

Gedruckt: 26.09.2017 19:29:55 | P1398700

Beobachtung und Auswertung

Beobachtung

- 1. Der Drehsinn des Ankers ändert sich nicht, wenn die Betriebsspannung umgepolt wird.
- 2. Die Drehzahl des Ankers ist umso größer, je höher die Betriebsspannung ist.
- 3. Wird der Anker bei unveränderter Richtung der Betriebsspannung umgepolt, dann kehrt sich seine Drehrichtung um.
- 4. Werden die Feldspulen bei unveränderter Richtung der Betriebsspannung umgepolt, dann kehrt sich die Drehrichtung des Ankers um.
- 5. Der Motor läuft auch, wenn er mit Wechselspannung betrieben wird.
- 6. Bei Belastung des Motors wird die Drehzahl des Ankers kleiner; die Ankerstromstärke nimmt von etwa 180 mA auf etwa 300 mA zu und die Feldstromstärke ändert sich (fast) nicht.

Auswertung

Bei einem Nebenschlussmotor sind die Anker- und die Feldspulen (Rotor- und Statorspulen) parallel geschaltet. Der Motor läuft (etwas) schneller, wenn die Betriebsspannung erhöht wird.

Bei Belastung des Motors steigt die Betriebsstromstärke (fast nur durch den Anstieg der Ankerstromstärke) an; die Feldstromstärke ändert sich fast nicht. Durch die Erhöhung der Ankerstromstärke bei Belastung erhöht sich das Drehmoment des Ankers, und somit passt sich die Leistung des Motors der Belastung an.

Der Nebenschlussmotor läuft auch mit Wechselspannung, weil dann die Pole im Stator und im Rotor gleichzeitig periodisch vertauscht werden.

Anmerkungen

Nebenschlussmotoren haben ein geringeres Anzugsvermögen als Hauptschlussmotoren. Dafür laufen sie bei nicht zu großen Belastungsschwankungen gleichmäßiger als Hauptschlussmotoren und sind für Antriebe geeignet, die möglichst unveränderte Drehzahlen erfordern (z. B. Bei Werkzeugmaschinen und Aufzügen).

Nebenschlussmotoren werden wie Hauptschlussmotoren auch Universalmotoren oder Allstrommotoren genannt, weil sie mit Gleich- oder Wechselspannung betrieben werden können.

