

Закон изображения и увеличения собирающей линзы

Физика	Свет и оптика	Оптические приборы и линзы		
р Уровень сложности	Р Размер группы	С Время подготовки	Время выполнения	
легко	1	10 Минут	10 Минут	

Общая информация

Описание

Изображение, получаемое с помощью фотообъектива

В повседневной жизни мы сталкиваемся с оптическими линзами в различных областях применения. Они являются частью каждого смартфона и расположены в планшетах и ноутбуках, чтобы делать фото и видео.

Но как это работает?

Основы для понимания этого вопроса будут продемонстрированы в этом и последующих экспериментах.

Дополнительная информация (1/2)

предварител знания

Учащиеся должны иметь общие представления о прямолинейном распространении света и уметь применять математические уравнения.

С помощью лампы накаливания демонстрируется прохождение луча света через собирающую линзу и подтверждается справедливость закона изображения (формулы тонкой линзы).

Дополнительная информация (2/2)

Цель

Следует показать, что для собирающей линзы справедливы следующие уравнения: 1/f = 1/g + 1/b и B/G = b/g.

Задачи

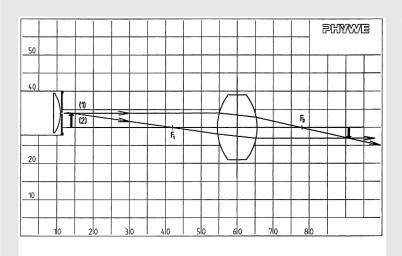
- 1. Постройте траектории лучей света
- 2. Измерьте все расстояния и размеры

Материал

Позиция	Материал	Пункт No.	Количество
1	Демонстрационная доска для эксп. по физике, с рамой	02150-00	1
2	Лампа, галоген., 12 В /50 Вт, с магнитным креплением	08270-20	1
3	Оптический блок, плосковыпуклый, с магнитным креплением	08270-02	2
4	PHYWE Многоступенчатый трансформатор пост. ток: 2/4/6/8/10/12 B, 5 A / перемен. ток: 2/4/6/8/10/12/	13533-93	1

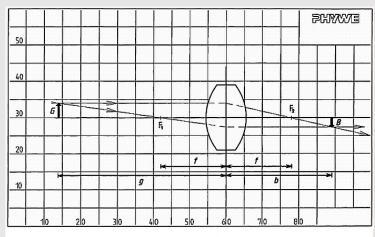
Материал

Позиция Материал		Количество	
1	Линейка	1	
2	Ручка, водорастворимая	1	



Подготовка и выполнение работы

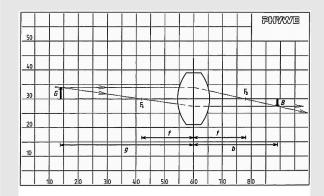
Подготовка



Экспериментальная установка на демонстрационной доске

- Нарисуйте оптическую ось в центре масштабированой магнитной панели демонстрационной доски.
- Отметьте плоскость (контуры) линзы на расстоянии x = 60 см и точки фокуса F1 и F2 (f = 180 MM).
- Прикрепите двояковыпуклую линзу, СОСТОЯЩУЮ ИЗ ДВУХ ПЛОСКОВЫПУКЛЫХ оптических блоков.

Выполнение работы


Построение траекторий луча света на демонстрационной доске

- Нарисуйте стрелку объекта (G = 40 мм, g = 460 мм).
- Используя лампу с однощелевой диафрагмой, пропустите луч света на кончик стрелки параллельно оптической оси и через фокусы.
- Наблюдайте за ходом лучей света.
- Снимите с демонстрационной доски лампу и линзу.
- Постройте ход лучей света за линзой; нарисуйте изображение
- Измерьте расстояния g, b, f, G и В.

Robert-Bosch-Breite 10 Tel: 0551 604 - 0 37079 Göttingen Fax: 0551 604 - 107

Наблюдение

Определение расстояний и размеров на демонстрационной доске

Измеренные расстояния:

Расстояние до объекта g =

Расстояние до изображения b =

Фокусное расстояние f =

Измеренные величины:

Размер объекта G =

Размер изображения В =

Оценка

Определите значения для 1/g, 1/b и 1/f.

$$1 / g =$$
 $_{MM}^{-1}$

$$1 / f = MM^{-1}$$

Таким образом, выполняется

Определите отношение B/G и b/g.

Таким образом, выполняется

Показать решения
 Повторить
 Экспортируемый текст

