Archimedes' principle

Physics	Mechanics	Mechanics	s of liquids & gases	
Difficulty level	RR Group size	C Preparation time	Execution time	
easy	2	10 minutes	10 minutes	

Teacher information

Application

Determination of the amount of water displaced by a mass

According to the Archimedean principle, the following statement applies:

"The static lift F_A of a body in a medium is as great as the weight of the medium displaced by the body."

Conversely, this means that a body of a certain mass m_K and a lower density than water into a container filled with water, displaces exactly the amount of water that corresponds to its weight. I.e. the weight force F_G of the body corresponds to the product of volume V_W and density ρ_W of the displaced water with the acceleration of gravity g:

$$F_G = m_K \cdot g = V_W \cdot
ho_W \cdot g \left[N
ight] \; \Rightarrow \; m_K = V_W \cdot
ho_W \left[kg
ight]$$

Other teacher information (2/2)

Safety instructions

The general instructions for safe experimentation in science lessons apply to this experiment.

Student Information

Motivation

PHYWE excellence in science

Ship floating in the sea

Due to the Archimedean principle it is possible that hot air balloons fly or ships float on the water. For this purpose, the vehicles are constructed so that the average density is lower than the medium in question. If the density of the body exceeds that of the medium, the body sinks to the ground, but its weight force is reduced by the opposite buoyancy force.

In this experiment you will learn to what extent the weight force is reduced by the buoyancy force and what the relationship is between the amount of water displaced and the weight force of the body in question.

Tasks

Does a force act on a body when immersed in water?

- Determine the weight of a body first in air and then in water.
- Determine the amount of water displaced when the body is immersed and its weight.

Equipment

Position	Material	Item No.	Quantity
1	Weight holder, 10 g	02204-00	1
2	Slotted weight, black, 10 g	02205-01	4
3	Slotted weight, black, 50 g	02206-01	2
4	Spring balance,transparent, 2 N	03065-03	1
5	Overflow vessel 250 ml	02212-00	1
6	Beaker, 100 ml, plastic (PP)	36011-01	1
7	Graduated cylinder, 50 ml, plastic	36628-01	1
8	Pipette with rubber bulb	64701-00	1
9	Balance pan, plastic	03951-00	2
10	Lever	03960-00	1
11	Pointer for lever	03961-00	1
12	Plate with scale	03962-00	1
13	Support base, variable	02001-00	1
14	Support rod, stainless steel, I = 250 mm, d = 10 mm	02031-00	1
15	Boss head	02043-00	1
16	Holding pin	03949-00	1
17	Set of precision weights,1g-50g	44017-01	1

Set-up (1/4)

Connecting the tripod foot

Mounting the support rod

Build a tripod with the tripod foot, the tripod rod and the double socket.

First connect the two halves of the tripod foot to form a tripod foot.

Then screw the stand rod into the stand foot and mount the double socket.

Attaching the double socket to the stand rod

Set-up (2/4)

Fasten the retaining bolt in double socket

Fasten the plate with scale together with the pointer using the retaining bolt in the middle of the beam scale.

Then fix the retaining bolt in the double socket.

Set-up (3/4)

Adjust the pointer so that it points exactly to the zero mark.

Put the pans together and hang them on the ends of the beam balance.

Taring the balance

Set-up (4/4)

Filling the overflow vessel with water

Fill the overflow vessel with water until it runs straight into the beaker.

Wait until no more water drips out, then dry the beaker carefully.

Procedure (1/4)

 \circ Determine the mass m_0 of the dry beaker with the beam balance and note the value in the protocol.

Determination of the mass of the empty cup

Procedure (3/4)

Determination of the weight forces in water

- Place the well-dried beaker under the maximum-filled overflow vessel and immerse the weight plate with the pieces of mass for the total masses of 50 g, 100 g and 150 g completely in the overflow vessel one after the other.
- \circ Read the value for the weight in water $F_{G_{W}}$ for the masses.
- Wait until no more water drips out and then determine the mass of the displaced water including the beaker m_1 with the beam balance.
- Enter all measured values in the table.
- Note: Make sure for each total mass that the beaker is dry and the overflow vessel is filled to the maximum.

Procedure (4/4)

• To disassemble the tripod base, press the buttons in the middle and pull both halves apart.

Disassembling the tripod base

excellence in science

PHYWE excellence in science

Report

Table							PHYWE excellence in science
Enter them i	n the appropr	iate fields.					
Determine th	ne buoyancy f	orces of the m	asses: $F_A =$	$F_{G_{iL}}-F_{G_{iW}}$	m	0 =	7
Determine th	ne mass of the	e overflowed v	vater: $m_W =$	$m_1 - m_0$			
Calculate the	e associated w	eight forces fr	om this: F_W	$= m_W \cdot g(g =$	$9,81m/s^2$)		
m [g]	$F_{G_{iL}}[N]$	$F_{G_{iW}}[N]$	$F_A[N]$	$m_1[g]$	$m_W[g]$	$F_W[N]$	
50							
100							
150							
	L						

Task 1	excellence in science
Compare the regults for T, with these of T, What do you find?	
Compare the results for F_A with those of F_W , what do you find?	
O F_W is greater than F_A .	
• F_A is greater than F_W .	
\bullet T_A and T_W are the same size.	
Check	

Task 2	
With which two methods can the buoyancy force F_A determine?	
The buoyancy force can be determined directly by measuring the mass in weight.	water in terms of its
One can determine the buoyancy force by building the difference of the water.	veight forces in air and
One can determine the buoyancy force by determining the weight of the o	displaced water.
⊘ Check	

Task 3	PHYWE excellence in science
How does the buoyancy force affect a submerged body?	
O It counteracts its weight and thus makes it appear lighter.	
O It has no effect on the body.	
O It works together with its weight and makes it appear heavier.	
Task 4	PHYWE excellence in science
When does a body swim, when does it sink?	
A body floats when it is gently laid on the water.	
A body always floats when its average density is lower than that of water.	

A body always floats when the effective buoyancy force is greater than its weight in water

Check

Slide	Score/Total
Slide 20: settlement of \(F_A\) and \(F_W\)	0/1
Slide 21: Determination of the buoyancy force	0/2
Slide 22: impact of \(F_A\)	0/1
Slide 23: buoyancy	0/2
Total amount	0/6
 Solutions Repeat Exporting text 	